Math 121B midterm, 2004 April 1. 2nd midterm R. Borcherds

Please make sure that your name is on everything you hand in.
You are allowed calculators and 1 page of notes.
All questions have about the same number of marks.

1. Solve the following differential equation by the method of Frobenius
(generalized power series):

\[x^2 y'' - 6y = 0. \]

2. Express \(\frac{d}{dx} J_0(x) \) in terms of \(J_1(x) \), using the definition

\[J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n+p}}{n!(n+p)!}. \]

3. Use the relation

\[\exp(2xh - h^2) = \sum_{n=0}^{\infty} \frac{H_n(x)h^n}{n!} \]

to calculate the Hermite polynomials \(H_0, H_1, H_2, \) and \(H_3 \). What is the coefficient of \(x^n \) of \(H_n(x) \)?

4. The Laguerre differential equation is

\[xy'' + (1-x)y' + py = 0. \]

Find the polynomial solution \(L_p(x) \) with constant term 1 for \(p = 3 \).

5. A bar of length \(\pi \) with insulated sides is initially at a temperature of
1. Starting at time \(t = 0 \), the ends are held at a temperature of 0.
Find the temperature distribution \(T(x, t) \) in the bar at time \(t \). The
temperature \(T \) satisfies the heat equation

\[\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}. \]