April 14, 2004 Math 118 M. Rieffel
Second Midterm Exam

State your answers clearly and fully (with whole sentences, please). Include all your work.
(Total points = 40.)

1. For each integer \(n \) let \(V_n \) and \(W_n \) be the usual subspaces of \(L^2(\mathbb{R}) \) coming from the Haar scaling function and wavelet (for dilation by 2).

 a) Explain carefully how the \(V_n \)'s and \(W_n \)'s are obtained.

 b) Exhibit explicitly the Haar wavelet orthonormal basis for \(W_2 \).

 c) For each \(n \) let \(X_n \) be the subspace of \(W_n \) consisting of those functions which have value 0 outside the interval \([0, 5]\). Determine the dimensions of \(X_1 \) and \(X_{-1} \) by finding bases for them. Justify your answer.

2. Fix a positive integer \(N \), and let \(x \) and \(y \) be complex-valued functions on \(\{0, 1, ..., N-1\} \).

 a) Define what is meant by the (discrete) Fourier transform, \(\hat{x} \), of \(x \).

 b) Define the convolution \(x*y \) of \(x \) and \(y \).

 c) Show that \((x*y)^\wedge = \hat{x} \hat{y} \), the pointwise product.