1. Use a Laplace transform to solve
 \[y' + y = \pi e^{-t}, \quad y(0) = 1. \]

2. Solve the heat eqn for a semi-infinite rod insulated at one end:
 \[u_t = u_{xx}, \quad x > 0, \ t > 0 \]
 \[u_x(0, t) = 0, \quad t > 0 \]
 \[u(x, 0) = e^{-x}, \quad x > 0 \]
 leave your answer as an integral.

3. Evaluate the integral
 \[\int_0^{2\pi} \frac{d\theta}{1 - r \sin \theta}, \quad r < 1 \]
 by contour integration.
4. Evaluate the integral
\[\int_{-\infty}^{\infty} \frac{e^{ix}}{1 + x^4} \, dx \]
by contour integration. Assume \(x \in \mathbb{R} \).

5. Use Lagrange multipliers to find the closest points to the origin on the surface
\[xy^2 = 8. \]

6. Suppose the functions
\[xe^u \cos v + u e^v \sin v = 1 \]
\[x^2 + y^2 + u^2 + v^2 = 2 \]
determine any two of \(x, y, u \) and \(v \) in terms of the other two. Evaluate
\(\left(\frac{\partial u}{\partial x} \right)_y \) and \(\left(\frac{\partial u}{\partial v} \right)_x \)
and use it for \(x, y, u \) and \(v \).