MATH 185 - FINAL EXAM Spr 02
L. Evans

INSTRUCTIONS: Answer each question on a separate sheet of paper, and write your name on each page. Each problem counts equally. Good luck.

Problem #1. Calculate the residue of

\[\frac{z^5}{z^4 + 16} \]

at \(z_0 = \sqrt{2}(1 + i) \).

Problem #2. Show that

\[\left| \frac{2z - i}{2 + iz} \right| = 1 \]

if \(|z| = 1 \).

Problem #3. Compute the first 4 terms of the Laurent expansion for

\[\frac{1}{e^z - 1} \]

around \(z_0 = 0 \).

Problem #4. Find complex numbers \(a, b, c, d \) so that the linear fractional transformation

\[T(z) = \frac{az + b}{cz + d} \]

satisfies

\[T(-1) = \infty, \quad T(0) = 1, \quad T(i) = i. \]

Problem #5. Compute

\[\int_0^{2\pi} \frac{1}{3 + \cos\theta} d\theta. \]

Problem #6. Assume \(a, b > 0 \) and calculate

\[\int_{-\infty}^{\infty} \frac{\cos bx - \cos ax}{x^2} dx. \]
Problem #7. (i) Find the image of the curve drawn in the picture under the mapping

\[f(z) = z + \frac{1}{z}. \]

In particular, plot the images \(A', B', C', D', E' \) of the points \(A, B, C, D, E \).

(ii) What is \(f'(z) \) at the points \(z = B, D \)? Is the mapping conformal at these points? Explain your answer.

Problem #8. (i) How many zeros (counting multiplicity) does the polynomial

\[z^8 + 3z^5 + 8z^2 + z + 1 \]

have within the region \(|z| < 1 \)?

(ii) How many zeros does this polynomial have within the region \(|z| < 2 \)?

Explain carefully how you reached your answers.

Problem #9. Let \(C \) be a simple closed curve, which is the boundary of a region \(R \). Assume \(f \) is analytic within \(R \) and \(f' \) is continuous on \(R \cup C \).

Use Green’s Theorem to prove Cauchy’s Theorem:

\[\int_C f \, dz = 0. \]

Problem #10. Assume that \(f \) is analytic within the ring \(R_1 < |z| < R_2 \). Start with Cauchy’s integral formula and derive the Laurent expansion:

\[f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \frac{b_n}{z^n}. \]

Write out integral formulas for the coefficients \(a_n, b_n \).
Problem #11. Suppose that f is analytic within a domain D, and $|f(z)| = 1$ for all $z \in D$.

Prove that f is constant.

Problem #12. Prove the Casorati–Weierstrass Theorem:

Assume f is analytic for $0 < |z - z_0| < 1$, and suppose that z_0 is an essential singularity of f. Let w_0 be any complex number. Then for each $\epsilon > 0$ and each $\delta > 0$, the inequality

$$|f(z) - w_0| < \epsilon$$

is satisfied for some point z in the deleted neighborhood $0 < |z - z_0| < \delta$.

(Hint: You may quote any relevant theorem on removable singularities.)