1. (12 points) Is the series \(\sum_{n=1}^{\infty} \frac{1}{2n^2 - \sqrt{n}} \) absolutely convergent, conditionally convergent, or divergent?

2. (14 points) Describe how one can compute \(\sum_{n=1}^{\infty} \frac{1}{n^3} \) to within 0.00005. (You do not need to actually carry out the computation, but if your answer involves, say, the \(n^{th}\) partial sum, then you should say what \(n\) is.)

3. (12 points) Is the series \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \) absolutely convergent, conditionally convergent, or divergent?

4. (12 points) Is the series \(\sum_{n=1}^{\infty} a_n \), where \(a_n = \begin{cases} \frac{1}{n + \sqrt{n}}, & \text{if } n \text{ is odd, or} \\ -\frac{1}{n}, & \text{if } n \text{ is even} \end{cases} \) absolutely convergent, conditionally convergent, or divergent? Explain. [Fewer than 10% of the students even got so far as to approach the main difficulty of this problem.]

5. (18 points) (a) Find the Taylor polynomial, \(T_3(x) \), for \(f(x) = xe^x \) (centered about \(a = 0 \)).
 (b) Use Taylor’s Inequality to find an upper bound for the error in using your answer to (a) to compute \(f(1) \).

6. (20 points) (a) Show that the series \(\sum_{n=0}^{\infty} \frac{x^{2n+1}}{1 \cdot 3 \cdot 5 \cdots (2n+1)} \) is a solution of the differential equation \(y' = 1 + xy \).
 (b) Over what interval is it a solution?

7. (12 points) Find the curve through the point \((1, 1)\) that is everywhere orthogonal to the family of curves \(y = Cx^3 \).