Problem 1 Let M be the set of real valued continuous functions f on $[0, 1]$ such that f' is continuous on $[0, 1]$, with the norm
\[
\|f\| = \sup_{0 \leq x \leq 1} |f(x)| + \sup_{0 \leq x \leq 1} |f'(x)|.
\]
Which subsets of M are compact?

Problem 2 A real-valued function f on a closed bounded interval $[a, b]$ is said to be upper semicontinuous provided that for every $\varepsilon > 0$ and $p \in [a, b]$, there is a $\delta = \delta(\varepsilon, p) > 0$ such that if $x \in [a, b]$ and $|x - p| < \delta$ then $f(x) < f(p) + \varepsilon$. Prove that an upper semicontinuous function is bounded above on $[a, b]$.

Problem 3 Evaluate the integral
\[
I = \int_0^\infty \frac{\sqrt{x}}{1 + x^2} \, dx.
\]

Problem 4 Does there exist a function f, analytic in the punctured plane $\mathbb{C} \setminus \{0\}$, such that
\[
|f(z)| \geq \frac{1}{\sqrt{|z|}}
\]
for all nonzero z?

Problem 5 Prove that any linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ has

1. a one-dimensional invariant subspace

2. a two-dimensional invariant subspace.

Problem 6 Let A and B be real 2×2 matrices such that
\[
A^2 = B^2 = I, \quad AB + BA = 0.
\]
Show that there exists a real 2×2 matrix T such that
\[
TAT^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad TBT^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]
Problem 7 Suppose p is a prime. Show that every element of $GL_2(\mathbb{F}_p)$ has order dividing either $p^2 - 1$ or $p(p - 1)$.

Problem 8 Show the denominator of $\binom{1/2}{n}$ is a power of 2 for all integers n.

Problem 9 For positive integers a, b and c show that

$$\gcd\{a, \text{lcm}\{b, c\}\} = \text{lcm}\{\gcd\{a, b\}, \gcd\{a, c\}\}.$$

Problem 10 If f is a C^2 function on an open interval, prove that

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x).$$

Problem 11 Let f be continuous and nonnegative on $[0, 1]$ and suppose that

$$f(t)^2 \leq 1 + 2 \int_0^t f(s)ds.$$

Prove that $f(t) \leq 1 + t$ for $0 \leq t \leq 1$.

Problem 12 Find the number of roots, counted with their multiplicities, of

$$z^7 - 4z^3 - 11 = 0$$

which lie between the circles $|z| = 1$ and $|z| = 2$.

Problem 13 Define $F : \mathbb{C}^3 \to \mathbb{C}^3$ by

$$F(u, v, w) = (u + v + w, uv + vw + uw, uvw).$$

Show that F is onto but not one-to-one.

Problem 14 Let f be holomorphic on and inside the unit circle C. Let L be the length of the image of C under f. Show that

$$L \geq 2\pi|f'(0)|.$$
Problem 15 Is there a real 2×2 matrix A such that

$$A^{20} = \begin{pmatrix} -1 & 0 \\ 0 & -1 - \varepsilon \end{pmatrix}.$$

Exhibit such an A or prove there is none.

Problem 16 Let

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Show that every real matrix B such that $AB = BA$ has the form

$$B = aI + bA + cA^2$$

for some real numbers a, b, and c.

Problem 17 Let $\mathbb{Z}[x]$ be the ring of polynomials in the indeterminate x with coefficients in the ring \mathbb{Z} of integers. Let $\mathfrak{I} \subset \mathbb{Z}[x]$ be the ideal generated by 13 and $x - 4$. Find an integer m such that $0 \leq m \leq 12$ and

$$(x^{26} + x + 1)^{73} - m \in \mathfrak{I}.$$

Problem 18 Prove that any finite group is isomorphic to

1. a subgroup of the group of permutations of n objects
2. a subgroup of the group of permutations of n objects which consists only of even permutations.