Problem 1 For which values of the real number a does the series
\[\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right)^a \]
converge?

Problem 2 Prove that the matrix
\[
\begin{pmatrix}
1 & 1.00001 & 1 \\
1.00001 & 1 & 1.00001 \\
1 & 1.00001 & 1
\end{pmatrix}
\]
has one positive eigenvalue and one negative eigenvalue.

Problem 3 Evaluate the integrals
\[\int_{-\pi}^{\pi} \frac{\sin n\theta}{\sin \theta} d\theta, \quad n = 1, 2, \ldots. \]

Problem 4 Suppose the group G has a nontrivial subgroup H which is contained in every nontrivial subgroup of G. Prove that H is contained in the center of G.

Problem 5 1. Find a basis for the space of real solutions of the differential equation
\[(*) \quad \sum_{n=0}^{7} \frac{d^n x}{dt^n} = 0. \]

2. Find a basis for the subspace of real solutions of $(*)$ that satisfy
\[\lim_{t \to +\infty} x(t) = 0. \]
Problem 6 Let $A = (a_{ij})_{i,j=1}^n$ be a real $n \times n$ matrix such that $a_{ii} \geq 1$ for all i, and
\[\sum_{i \neq j} a_{ij}^2 < 1. \]
Prove that A is invertible.

Problem 7 Let f be a continuously differentiable function from \mathbb{R}^2 into \mathbb{R}. Prove that there is a continuous one-to-one function g from $[0,1]$ into \mathbb{R}^2 such that the composite function $f \circ g$ is constant.

Problem 8 Let \mathbb{Q} be the field of rational numbers. For θ a real number, let $F_\theta = \mathbb{Q}(\sin \theta)$ and $E_\theta = \mathbb{Q}(\sin \sqrt{\theta})$. Show that E_θ is an extension field of F_θ, and determine all possibilities for $\dim_{F_\theta} E_\theta$.

Problem 9 Evaluate
\[\int_0^\infty \frac{(\log x)^2}{x^2 + 1} \, dx. \]

Problem 10 Let the function $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfy the following two conditions:

(i) $f(K)$ is compact whenever K is a compact subset of \mathbb{R}^n.

(ii) If $\{K_n\}$ is a decreasing sequence of compact subsets of \mathbb{R}^n, then
\[f \left(\bigcap_{n=1}^\infty K_n \right) = \bigcap_{n=1}^\infty f(K_n). \]
Prove that f is continuous.

Problem 11 Write down a list of 5×5 complex matrices, as long as possible, with the following properties:

1. The characteristic polynomial of each matrix in the list is x^5;
2. The minimal polynomial of each matrix in the list is x^3;
3. No two matrices in the list are similar.
Problem 12 Suppose the coefficients of the power series
\[\sum_{n=0}^{\infty} a_n z^n \]
are given by the recurrence relation
\[a_0 = 1, \ a_1 = -1, \ 3a_n + 4a_{n-1} - a_{n-2} = 0, \ n = 2, 3, \ldots. \]
Find the radius of convergence of the series and the function to which it converges in its disc of convergence.

Problem 13 Let \(p \) be an odd prime and \(\mathbb{F}_p \) the field of \(p \) elements. How many elements of \(\mathbb{F}_p \) have square roots in \(\mathbb{F}_p \)? How many have cube roots in \(\mathbb{F}_p \)?

Problem 14 Find the maximum area of all triangles that can be inscribed in an ellipse with semiaxes \(a \) and \(b \), and describe the triangles that have maximum area.
Note: See also Problem \(?? \).

Problem 15 Let \(M_{7 \times 7} \) denote the vector space of real \(7 \times 7 \) matrices. Let \(A \) be a diagonal matrix in \(M_{7 \times 7} \) that has \(+1\) in four diagonal positions and \(-1\) in three diagonal positions. Define the linear transformation \(T \) on \(M_{7 \times 7} \) by \(T(X) = AX -XA \). What is the dimension of the range of \(T \)?

Problem 16 Let \(\mathcal{D} \) denote the open unit disc in \(\mathbb{R}^2 \). Let \(u \) be an eigenfunction for the Laplacian in \(\mathcal{D} \); that is, a real valued function of class \(C^2 \) defined in \(\mathcal{D} \), zero on the boundary of \(\mathcal{D} \) but not identically zero, and satisfying the differential equation
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \lambda u, \]
where \(\lambda \) is a constant. Prove that
\[(\ast) \quad \int \int_{\mathcal{D}} |\text{grad } u|^2 dxdy + \lambda \int \int_{\mathcal{D}} u^2 dxdy = 0, \]
and hence that \(\lambda < 0 \).

Problem 17 Let \(R \) be a ring with identity, and let \(u \) be an element of \(R \) with a right inverse. Prove that the following conditions on \(u \) are equivalent:
1. \(u \) has more than one right inverse;

2. \(u \) is a zero divisor;

3. \(u \) is not a unit.

Problem 18 Let the function \(f \) be analytic in the complex plane, real on the real axis, 0 at the origin, and not identically 0. Prove that if \(f \) maps the imaginary axis into a straight line, then that straight line must be either the real axis or the imaginary axis.