Problem 1 Prove that every finite group of order at least 3 has a nontrivial automorphism.

Problem 2 Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $|f(x) - f(y)| \geq |x - y|$ for all x and y. Prove that the range of f is all of \mathbb{R}.
Note: See also Problem ??.

Problem 3 Evaluate the integral
\[I = \frac{1}{2\pi i} \int_C \frac{z^{n-1}}{3z^n - 1} dz, \]
where n is a positive integer, and C is the circle $|z| = 1$, with counterclockwise orientation.

Problem 4 1. Prove that any real $n \times n$ matrix M can be written as $M = A + S + cI$, where A is antisymmetric, S is symmetric, c is a scalar, I is the identity matrix, and $\text{tr } S = 0$.

2. Prove that with the above notation,
\[\text{tr}(M^2) = \text{tr}(A^2) + \text{tr}(S^2) + \frac{1}{n}(\text{tr } M)^2. \]

Problem 5 Let f be an infinitely differentiable function from \mathbb{R} to \mathbb{R}. Suppose that, for some positive integer n,
\[f(1) = f(0) = f'(0) = f''(0) = \cdots = f^{(n)}(0) = 0. \]
Prove that $f^{(n+1)}(x) = 0$ for some x in $(0,1)$.

Problem 6 Let the function f be analytic in the disc $|z| < 1$ of the complex plane. Assume that there is a positive constant M such that
\[\int_0^{2\pi} |f'(re^{i\theta})| d\theta \leq M, \quad (0 \leq r < 1). \]
Prove that
\[\int_{[0,1]} |f(x)| dx < \infty. \]
Problem 7 Consider the vector differential equation
\[
\frac{dx(t)}{dt} = A(t)x(t)
\]
where \(A \) is a smooth \(n \times n \) function on \(\mathbb{R} \). Assume \(A \) has the property that
\[
\langle A(t)y, y \rangle \leq c\|y\|^2
\]
for all \(y \) in \(\mathbb{R}^n \) and all \(t \), where \(c \) is a fixed real number. Prove that any solution \(x(t) \) of the equation satisfies \(\|x(t)\| \leq e^{ct}\|x(0)\| \) for all \(t > 0 \).

Problem 8 Let \(a_1, a_2, a_3, \ldots \) be positive numbers.

1. Prove that \(\sum a_n < \infty \) implies \(\sum \sqrt{a_n a_{n+1}} < \infty \).

2. Prove that the converse of the above statement is false.

Problem 9 Let \(G \) be a group of order \(2p \), where \(p \) is an odd prime. Assume that \(G \) has a normal subgroup of order \(2 \). Prove that \(G \) is cyclic.

Problem 10 Let \(F \) be a finite field of order \(p \). Compute the order of \(SL_3(F) \), the group of \(3 \times 3 \) matrices over \(F \) of determinant 1.

Problem 11 Let \(X \) and \(Y \) be metric spaces and \(f \) a continuous map of \(X \) into \(Y \). Let \(K_1, K_2, \ldots \) be nonempty compact subsets of \(X \) such that \(K_{n+1} \subset K_n \) for all \(n \), and let \(K = \bigcap K_n \). Prove that \(f(K) = \bigcap f(K_n) \).

Problem 12 Let \(p \) be a nonconstant complex polynomial whose zeros are all in the half-plane \(\Im z > 0 \).

1. Prove that \(\Im(p'/p) > 0 \) on the real axis.

2. Find a relation between \(\deg p \) and
\[
\int_{-\infty}^{\infty} \Im \frac{p'(x)}{p(x)} \, dx.
\]

Problem 13 Let \(A = (a_{ij})_{i,j=1}^n \) be a real \(n \times n \) matrix with nonnegative entries such that
\[
\sum_{j=1}^n a_{ij} = 1 \quad (1 \leq i \leq n).
\]
Prove that no eigenvalue of \(A \) has absolute value greater than 1.
Problem 14 Let \mathcal{B} denote the unit ball of \mathbb{R}^3, $\mathcal{B} = \{ r \in \mathbb{R}^3 \mid \| r \| \leq 1 \}$. Let $J = (J_1, J_2, J_3)$ be a smooth vector field on \mathbb{R}^3 that vanishes outside of \mathcal{B} and satisfies $\nabla \cdot J = 0$.

1. For f a smooth, scalar-valued function defined on a neighborhood of \mathcal{B}, prove that
$$\int_{\mathcal{B}} (\nabla f) \cdot \vec{J} \, dx dy dz = 0.$$

2. Prove that
$$\int_{\mathcal{B}} J_1 \, dx dy dz = 0.$$

Problem 15 Let \mathcal{I} be the ideal in the ring $\mathbb{Z}[x]$ generated by $x - 7$ and 15. Prove that the quotient ring $\mathbb{Z}[x]/\mathcal{I}$ is isomorphic to \mathbb{Z}_{15}.

Problem 16 Let $M_{n \times n}$ be the space of real $n \times n$ matrices. Regard it as a metric space with the distance function
$$d(A, B) = \sum_{i,j=1}^{n} |a_{ij} - b_{ij}| \quad (A = (a_{ij}), B = (b_{ij})).$$

Prove that the set of nilpotent matrices in $M_{n \times n}$ is a closed set.

Problem 17 Let f be a C^1 function from the interval $(-1, 1)$ into \mathbb{R}^2 such that $f(0) = 0$ and $f'(0) \neq 0$. Prove that there is a number ε in $(0, 1)$ such that $\| f(t) \|$ is an increasing function of t on $(0, \varepsilon)$.

Problem 18 Let the function f be analytic in the entire complex plane and satisfy the inequality $|f(z)| \leq |\Re z|^{-1/2}$ off the imaginary axis. Prove that f is constant.