Problem 1 Evaluate the integral
\[\int_{-\infty}^{\infty} \frac{\cos x}{1 + x^4} \, dx. \]

Problem 2 Consider an autonomous system of differential equations
\[\frac{dx_i}{dt} = F_i(x_1, \ldots, x_n), \]
where \(F = (F_1, \ldots, F_n) : \mathbb{R}^n \to \mathbb{R}^n \) is a \(C^1 \) vector field.

1. Let \(U \) and \(V \) be two solutions on \(a < t < b \). Assuming that
\[\langle DF(x)z, z \rangle \leq 0 \]
for all \(x, z \) in \(\mathbb{R}^n \), show that \(\|U(t) - V(t)\|^2 \) is a decreasing function of \(t \).

2. Let \(W(t) \) be a solution defined for \(t > 0 \). Assuming that
\[\langle DF(x)z, z \rangle \leq -\|z\|^2, \]
show that there exists \(C \in \mathbb{R}^n \) such that
\[\lim_{t \to \infty} W(t) = C. \]

Problem 3 Let \(S_n \) be the group of all permutations of \(n \) objects and let \(G \) be a subgroup of \(S_n \) of order \(p^k \), where \(p \) is a prime not dividing \(n \). Show that \(G \) has a fixed point; that is, one of the objects is left fixed by every element of \(G \).

Problem 4 Prove the following three statements about real \(n \times n \) matrices.

1. If \(A \) is an orthogonal matrix whose eigenvalues are all different from \(-1 \), then \(I + A \) is nonsingular and \(S = (I - A)(I + A)^{-1} \) is skew-symmetric.
2. If S is a skew-symmetric matrix, then $A = (I - S)(I + S)^{-1}$ is an orthogonal matrix with no eigenvalue equal to -1.

3. The correspondence $A \leftrightarrow S$ from Parts 1 and 2 is one-to-one.

Problem 5 The Fibonacci numbers f_1, f_2, \ldots are defined recursively by $f_1 = 1$, $f_2 = 2$, and $f_{n+1} = f_n + f_{n-1}$ for $n \geq 2$. Show that

$$
\lim_{n \to \infty} \frac{f_{n+1}}{f_n}
$$

exists, and evaluate the limit.

Note: See also Problem ??.

Problem 6 Let f and g be continuous functions on \mathbb{R} such that $f(x + 1) = f(x)$, $g(x + 1) = g(x)$, for all $x \in \mathbb{R}$. Prove that

$$
\lim_{n \to \infty} \int_0^1 f(x) g(nx) \, dx = \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx.
$$

Problem 7 Find a specific polynomial with rational coefficients having $\sqrt{2} + \sqrt{3}$ as a root.

Problem 8

1. How many zeros does the function $f(z) = 3z^{100} - e^z$ have inside the unit circle (counting multiplicities)?

2. Are the zeros distinct?

Problem 9 Let $M_{2 \times 2}$ be the vector space of all real 2×2 matrices. Let

$$
A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}
$$

and define a linear transformation $L : M_{2 \times 2} \to M_{2 \times 2}$ by $L(X) = AXB$. Compute the trace and the determinant of L.

Problem 10 Let $A = (a_{ij})$ be an $n \times n$ matrix whose entries a_{ij} are real valued differentiable functions defined on \mathbb{R}. Assume that the determinant $\det(A)$ of A is everywhere positive. Let $B = (b_{ij})$ be the inverse matrix of A. Prove the formula

$$
\frac{d}{dt} \log (\det(A)) = \sum_{i,j=1}^n \frac{da_{ij}}{dt} b_{ji}.
$$
Problem 11 Consider the complex 3×3 matrix

$$A = \begin{pmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{pmatrix},$$

where $a_0, a_1, a_2 \in \mathbb{C}$.

1. Show that $A = a_0 I_3 + a_1 E + a_2 E^2$, where

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

2. Use Part 1 to find the complex eigenvalues of A.

3. Generalize Parts 1 and 2 to $n\times n$ matrices.

Problem 12 Let a, b be real constants and let

$$u(x, y) = a^2 + b^2 + x^2 - y^2$$

Show that u is harmonic and find an entire function $f(z)$ whose real part is u.

Correction: u cannot be the real part of an entire function. Why? Change u slightly and do the problem.

Problem 13 Let f be a real valued function on \mathbb{R}^n of class C^2. A point $x \in \mathbb{R}^n$ is a critical point of f if all the partial derivatives of f vanish at x; a critical point is nondegenerate if the $n \times n$ matrix

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j} (x) \right)$$

is nonsingular.

Let x be a nondegenerate critical point of f. Prove that there is an open neighborhood of x which contains no other critical points (i.e., the nondegenerate critical points are isolated).
Problem 14 Let $V : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function and consider the system of second order differential equations

$$x_i''(t) = f_i(x(t)), \quad 1 \leq i \leq n,$$

where

$$f_i = -\frac{\partial V}{\partial x_i}.$$

Let $x(t) = (x_1(t), \ldots, x_n(t))$ be a solution of this system on a finite interval $a < t < b$.

1. Show that the function

$$H(t) = \frac{1}{2} \langle x'(t), x'(t) \rangle + V(x(t))$$

is constant for $a < t < b$.

2. Assuming that $V(x) \geq M > -\infty$ for all $x \in \mathbb{R}^n$, show that $x(t)$, $x'(t)$, and $x''(t)$ are bounded on $a < t < b$, and then prove all three limits

$$\lim_{t \to b} x(t), \lim_{t \to b} x'(t), \lim_{t \to b} x''(t)$$

exist.

Problem 15 Let f be a holomorphic map of the unit disc $D = \{z \mid |z| < 1\}$ into itself, which is not the identity map $f(z) = z$. Show that f can have, at most, one fixed point.

Problem 16 Let G be a group with three normal subgroups N_1, N_2, N_3. Suppose $N_i \cap N_j = \{e\}$ and $N_iN_j = G$ for all i, j with $i \neq j$. Show that G is abelian and N_i is isomorphic to N_j for all i, j.

Problem 17 Let f be a continuous function on $[0, 1]$. Evaluate the following limits.

1.

$$\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx.$$
2.
\[\lim_{n \to \infty} n \int_{0}^{1} x^n f(x) \, dx. \]

Problem 18 Let \(A \) and \(B \) be two real \(n \times n \) matrices. Suppose there is a complex invertible \(n \times n \) matrix \(U \) such that \(A = UBU^{-1} \). Show that there is a real invertible \(n \times n \) matrix \(V \) such that \(A = VBV^{-1} \). (In other words, if two real matrices are similar over \(\mathbb{C} \), then they are similar over \(\mathbb{R} \).)

Problem 19 Either prove or disprove (by a counterexample) each of the following statements:

1. Let \(f : \mathbb{R} \to \mathbb{R}, \ g : \mathbb{R} \to \mathbb{R} \) be such that
 \[\lim_{t \to a} g(t) = b \quad \text{and} \quad \lim_{t \to b} f(t) = c. \]
 Then
 \[\lim_{t \to a} f(g(t)) = c. \]

2. If \(f : \mathbb{R} \to \mathbb{R} \) is continuous and \(U \) is an open set in \(\mathbb{R} \), then \(f(U) \) is an open set in \(\mathbb{R} \).

3. Let \(f \) be of class \(C^\infty \) on the interval \((-1, 1)\). Suppose that \(|f^{(n)}(x)| \leq 1 \) for all \(n \geq 1 \) and all \(x \) in the interval. Then \(f \) is real analytic; that is, it has a convergent power series expansion in a neighborhood of each point of the interval.

Problem 20 Let \(G \) be a group of order 10 which has a normal subgroup of order 2. Prove that \(G \) is abelian.