450 points total. The first 10 questions are Multiple Choice, worth 10 points each. For each question mark an × in the most correct place in the grid below.

No partial credit for 1-10.

Questions 16 through 21 are not multiple choice.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GSI's only

MC
16
17
18
19
20
21
TOTAL
1. Which of the following is most correct concerning the function \(y = f(x) \), which is differentiable at \(a \).

 a) \(f'(a) = \lim_{\delta \to 0} \frac{f(a + \delta) - f(a)}{\delta} \)

 b) \(f'(a) = \lim_{\delta \to 0} \frac{f(a + \frac{\delta}{2}) - f(a)}{\delta} \)

 c) \(f'(a) = \lim_{\delta \to \frac{1}{2}} \frac{f(a + \delta) - f(a)}{(\frac{1}{2})} \)

 d) \(f'(a) = \lim_{\delta \to a} \frac{f(a) - f(a)}{\delta} \)

 e) \(f'(a) \) is the limiting slope of the straight line obtained by zooming in more and more on the graph of \(y = f(x) \) at \(x = a \).

2. Which of the following functions (for \(x \neq 0 \)) could have the following curve as its graph?

 a) \(y = x \ln |x| \)

 b) \(y = e^{-\frac{1}{x}} \)

 c) \(y = xe^x \)

 d) \(y = xe^{-x} \)

 e) \(y = -xe^{-x} \)

3. Newton’s method used to solve the equation \(\frac{1}{x} - a = 0 \) yields the following sequence of approximations

 a) \(x_{n+1} = 3x_n - ax_n^2 \)

 b) \(x_{n+1} = 2x_n - ax_n^2 \)

 c) \(x_{n+1} = \frac{1}{x_n} - a \)

 d) \(x_{n+1} = x_n - \frac{1}{a} \)

 e) \(x_{n+1} = ax_n \)
4. If the graph of f' is

which of the following could be the graph of f?
5. Which of the following best represents the graph of the function \(f(x) = \frac{x^3 + 1}{x^2 + 1} \)?
6. Let \(f \) and \(g \) be two functions differentiable for all \(x \) and suppose that \(f(a) = g(a) \) and \(f''(x) > g''(x) + \frac{1}{2} \) for all \(x > a \). Which of the following can we conclude?

a) \(f(x) > g(x) \) for all \(x > a \)

b) \(f(x) \geq g(x) \) for all \(x > a \)

c) \(f(x) > g(x) \) for all \(x > c \) for some sufficiently large \(c \)

d) \(f'(x) > g'(x) \) for all \(x > a \)

e) \(f'(x) \geq g'(x) \) for all \(x > a \)

7. Which of the following functions is continuous?

a) \(f(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \)

b) \(f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \)

c) \(f(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \)

d) \(f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \)

e) \(f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \)

8. A ladder 10 ft long is leaning against a vertical wall. It starts to slide. When the point of contact of the ladder with the wall is 6 ft from the base of the wall that point of contact is moving down at 2 ft/sec. How fast is the point where the ladder touches the ground moving at that time?

a) 1\(\frac{1}{2} \) ft/sec

b) 2 ft/sec

c) 2\(\frac{1}{2} \) ft/sec

d) 2\(\frac{1}{2} \) ft/sec

e) 2\(\frac{2}{3} \) ft/sec
9. The maximum value of \(y = x^3 - 6x^2 + 9x \) on the interval \([-2,0]\) is
 a) 0
 b) 4
 c) 14
 d) 16
 e) It doesn't attain its maximum.

10. Which of the following best describes a solid whose volume is given by the formula \(\int_0^2 2\pi y(4-y^2)dy \) ?
 a) The solid obtained by rotating the region in the first quadrant bounded by \(x = 4-y^2 \) and the y-axis about the x axis.
 b) The solid obtained by rotating the region in the first quadrant bounded by \(x = y^2 \) and the y-axis about the x axis.
 c) The solid obtained by rotating the region in the first quadrant bounded by \(x = y^2 \) and the y-axis about the y axis.
 d) The solid obtained by rotating the region in the first quadrant bounded by \(x = 4-y^2 \) and the y-axis about the y axis.
 e) The solid obtained by rotating the region in the first quadrant bounded by \(x = \sqrt{2}y(4-y^2) \) and the y-axis about the x axis.

11. \(\lim_{x \to 0^+} \frac{1}{x^3} \int_0^x \sin(t^2)dt \) is
 a) 0
 b) 1
 c) \(\frac{1}{3} \)
 d) 3
 e) -3
12. A point on the curve \(y^2 = x^2 + 4x + 7 \) closest to the origin is
 a) \((-1, 2)\)
 b) \((1, \sqrt{12})\)
 c) \((0, \sqrt{7})\)
 d) \((2, \sqrt{19})\)
 e) \((-2, \sqrt{3})\)

13. Which of the following functions is differentiable at \(x = 0 \)?
 a) \(f(x) = \sqrt{1 + |x|} \)
 b) \(f(x) = |x| \)
 c) \(f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases} \)
 d) \(f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \)
 e) \(f(x) = \begin{cases} \sin x & x \geq 0 \\ \cos x & x < 0 \end{cases} \)

14. If \(f(x) = x \ln x \) then \(f^{(10)}(x) \) is
 a) \(\frac{1}{10!} x^{10} \)
 b) \(10! \ln(x) \)
 c) \(\frac{1}{8!} x^8 \)
 d) \(8! \ln(x) \)
 e) \(8! x^{-9} \)

15. The area between the curves \(y = 2x - x^2 \) and \(y = x^2 \) for \(0 \leq x \leq 2 \) is
 a) \(-\frac{2}{3} \)
 b) \(-\frac{4}{3} \)
 c) 0
 d) 2
 e) \(\frac{2}{3} \)
Longer Questions

16. (50 pts) Evaluate the following definite integrals.

(i) \[\int \frac{\sin 2x}{\sin x} \, dx \]

(ii) \[\int \sqrt{3 - 5x} \, dx \]

(iii) \[\int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx \]

(iv) \[\int x \sqrt{x^2 + a^2} \, dx \]

(v) \[\int \frac{\cos \left(\frac{x}{\lambda} \right)}{x^2} \, dx \]
17. (60 pts) Evaluate the following definite integrals.

(i) \[\int_0^3 |6 - 9x + 3x^2| \, dx \]

(ii) \[\int_0^1 e^{xt} \, dt \]

(iii) \[\int_0^1 \frac{1}{x^2 + 1} \, dx \]

(iv) \[\int_e^4 \frac{dx}{x\sqrt{\ln x}} \]

(v) \[\int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{x^2 \sin x}{1 + x^6} \, dx \]
18. (50 pts) Evaluate the following limits.

(i) \(\lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} \frac{i}{n^8} \right) \)

(ii) \(\lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} \sqrt{1 - \frac{i^2}{n^2}} \right) \)

(iii) \(\lim_{x \to \infty} \frac{\ln x}{x^2} \)

(iv) \(\lim_{z \to 1^+} \frac{x - 1}{\tan \left(\frac{\pi x}{2} \right)} \)

(v) \(\lim_{x \to 0} \frac{\sin x}{1 + \cos x} \)
19. (50 pts) Evaluate the following derivatives.

(i) \(\frac{d}{dx} \left(\frac{x}{x^3 + 1} \right) \)

(ii) \(\frac{d^2}{dx^2} (e^{-x^2}) \)

(iii) \(\frac{d}{dx} \int_{x}^{e^x} \frac{\cosh(t^2)}{1 + t^4} \, dt \)

(iv) \(\frac{d}{dx} (x^{-x}) \)

(v) \(\frac{d^{30}}{dx^{30}} (\sin x) \)
20. (45 pts) The base of a solid is a square with vertices at (1,0), (0,1), (−1,0) and (0,−1). Each cross-section perpendicular to the x-axis is a semicircle. Find the volume of the solid.
21. (45 pts) Find the volume of the solid obtained by rotating the bounded region between the curves \(y = x^2 \) and \(y = x^3 \) about the line \(y = 2 \).