1. (45 points, 5 points apiece) Give each of the following if it is defined. If an expression is undefined, say so. (You do not have to give a reason in such cases.)

(a) An equation for the tangent plane to the surface \(x^2 - 2y^2 + 3z^2 = 20 \) at the point (1, 2, 3).

(b) An expression for \(\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) \, dy \, dx \) in which the order of integrations is reversed (i.e., as an iterated integral of \(f(x, y) \) in which the outer integration is with respect to \(y \) and the inner integration with respect to \(x \)).

(c) The mass of a lamina occupying the quarter-circular region \(\{(x, y) : x \geq 0, y \geq 0, x^2 + y^2 \leq 1 \} \), and having density function \(\rho(x, y) = xy \).

(d) A sketch of the curve \(x = \sin 2t, \ y = \sin t, \ 0 \leq t \leq 2\pi \), with the maximum and minimum values of \(x \) and \(y \) marked on the axes.

(e) The unit upward normal to the surface \(x = u \cos v, \ y = u \sin v, \ z = v \) at the point \(u = 3/4, \ v = 0 \).

(f) \(\nabla F \), where \(F(x, y, z) = <1, x, xy> \).

(g) \(\text{div} F \), where \(F(x, y, z) = <x^3 y^5, x^8, y^{13}, x^2 y^{34}> \).

(h) An equation of the form \(z = f(x, y) \) describing the set of points \((x, y, z) \) equidistant from the line \(x = z = 0 \) (the y-axis) and the line \(y = 0, z = 1 \).

(i) \(\int_S F \cdot dS \), where \(F \) is the constant vector field \(<2, 5, -1> \), and \(S \) is the parallelogram with vertices \((0, 0, 0), (0, 2, 2), (1, 2, 2), (1, 0, 0) \), and downward orientation.

2. (14 points) Let \(C \) be a space curve, given by

\[r(t) = <x(t), y(t), z(t)> \quad (a \leq t \leq b), \]

where \(x(t), y(t), \) and \(z(t) \) are functions; and let \(S \) be the surface given parametrically by

\[q(s, t) = sr(t) \quad (0 \leq s \leq 1, \ a \leq t \leq b). \]

(This will be a "cone-like" surface, with the origin as apex and the curve \(C \) as "base".)

Assuming that this surface does not "overlap" itself, i.e., that the above parameterization is one-to-one for \(s \neq 0 \), show that the area of \(S \) is given by

\[A = \int_a^b \sqrt{(xy' - x'y)^2 + (yz' - y'z)^2 + (zx' - z'x)^2} \, dt, \]

where \(x \) means \(x(t) \), \(y' \) means \(y'(t) \), etc.
3. (13 points) Let \(\mathbf{F} \) be a differentiable vector field on \(\mathbb{R}^3 \), let \(f \) be the function
\[
f(x, y, z) = 1 - x^2 - y^2 - z^2,
\]
and let \(E \) be the solid ball
\[
E = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1\}.
\]
Show that
\[
\iiint_E \text{div}(f(x, y, z) \mathbf{F}(x, y, z)) \, dx \, dy \, dz = 0.
\]

4. (14 points) Suppose \(f(x, y) \) is a real-valued function of two real variables \(x \) and \(y \).

(a) (4 points) Given a point \((x_0, y_0) \), and a real number \(L \), define what it means for
\[
\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L
\]
to hold.

(b) (3 points) Define what it means for \(f \) to be continuous at \((x_0, y_0) \).

(c) (7 points) Let \(f \) be the function defined by the formulas
\[
f(x, y) = x \text{ if } x^2 + y^2 \leq 1,
f(x, y) = y \text{ if } x^2 + y^2 > 1.
\]
At what points is \(f \) continuous, and at what points is it discontinuous? The answer will involve more than one case; give a reason for one case of your answer.

5. (14 points) Let \(\mathbf{F} \) be the vector field \(\langle x^2e^z, 0, -2xe^z \rangle \).

(a) (5 points) Find constants \(a \) and \(b \) such that \(\text{curl} \langle axye^z, 0, bx^2ye^z \rangle = \mathbf{F} \).

(b) (9 points) Calculate \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), where \(S \) is the surface \(z = xy(1 - x - y) \), \(x \geq 0, y \geq 0, x + y \leq 1 \), with upward orientation. (Suggestion: Use part (a).)