Math 16B, Final Exam, Fall 1996
R. Hartshorne

Part I. Shorter questions. Show work and put answers in boxes. 3 points each. No partial credit. No credit without work shown.

1. Find \(\frac{\partial}{\partial x} \left(\frac{\sin x + \cos y}{\sin x - \cos y} \right) \) and simplify.

2. Find \(\int x^2 e^{-x} dx \).

3. Find \(\int_{e}^{2e} \frac{dx}{x \ln x} \).

4. Find \(\int_{0}^{\infty} xe^{-x^2} dx \).
5. Use the fact that a circle of radius r has area $A = \pi r^2$ to find the area of the ellipse $9x^2 + 25y^2 = 225$.

6. If $y' = 3t + ty$ and $y(0) = 5$, find $y = f(t)$.

7. If $y' = 3t + t^2$ and $y(0) = 5$, find $y = f(t)$.

8. Find the rational number, in lowest terms, whose decimal expansion is .027027027...

9. Find the sum of the infinite series $2 + \frac{4}{5} + \frac{8}{25} + \frac{16}{125} + \frac{32}{625} + \ldots$
10. Use a Taylor series to approximate the definite integral $\int_{0}^{0.1} e^{x^2} \, dx$
to ten decimal places.

Part II. Longer questions. 10 points each. Show your work and put answers in boxes. No
credit without work.

1. Let $f(x, y) = 2x^2 - x^4 - y^2$.
 (a) Find all points at which $f(x, y)$ has a potential relative maximum or minimum.

 (b) Use the second derivative test at each of the points found in part (a) above,
to determine whether the function has a relative maximum, a relative minimum,
neither of these, or no conclusion from the test.

2. Integrate
 (a) $\int \sin^3 x \, dx$. Hint: Use the identity $\sin^2 x + \cos^2 x = 1$.

 (b) $\int x \sec^2 x \, dx$.

3
3. Consider the differential equation $y' = y^2 - 3y - 4$.
 (a) Draw the graph of $z = y^2 - 3y - 4$ in the yz-plane.

 (b) Sketch solutions of the differential equations in the ty-plane, showing constant
 solutions and the solutions with initial conditions $y(0) = 0$ and $y(0) = 3$. Indicate
 where the solutions are concave up, or concave down, and mark any inflection
 points.

4. Find the first three nonzero terms of the Taylor series for $f(x) = \tan x$ around
 $x = 0$. (Be sure to write your answer in simplest form.)
5. Given the Taylor series \(\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots \)

(a) Find the first five terms of the Taylor series for \(\ln(1 + 2x) \).

(b) Find the function (in simplest form) whose Taylor series is \(2 + 3x + 4x^2 + 5x^3 + 6x^4 + \ldots \). Hint: compare to the derivative of the series for \(1/(1-x) \).
6. The XYZ musical instrument company plans to make \(x \) xylophones and \(y \) yellow synthesizers. Because of restrictions on the time of the expert technicians and the raw materials needed, \(x \) and \(y \) must satisfy the equation \(4x^2 + 25y^2 = 50,000 \). The company makes a profit of \$20\) for each xylophone and \$100\) for each yellow synthesizer.

(a) Find the production levels \(x \) and \(y \) which will maximize profits, and

(b) Find the resulting profit to the company.
7. Suppose that your parents set up a fund for your college education. They deposit $40,000 into a bank account on January 1st of your first year. (We will assume for simplicity that you start school in January.) This account earns interest, compounded continuously, at a rate of 6% per year. You have to make continuous withdrawals at the rate of $1,000 per month to pay for your tuition, room and board, etc. (We will also assume that your expenses are spread out evenly throughout the year.)

(a) Write a differential equation for \(y = \) the amount of money in the account at time \(t \) in years.

(b) Solve the equation to find the function \(y = f(t) \).

(c) Now answer this question: Will you be able to complete four years of college with this fund, or will you have to get a job to supplement your income? If the money will run out before the end of four years, in which month of which year will that happen?