Math 54, Section 1: Differential equations and linear algebra.
Fall 1994, H. W. Lenstra, Jr.
Final examination, December 12, 1994.

Name:
Section number:
T.A.:

List of discussion sections:
101 S. Simic
102 A. Gottlieb
103 G. Anderson
104 G. Anderson
105 S. Simic
106 T. Walker
107 A. Gottlieb
108 L. Pyle
109 L. Pyle

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (20 points)
Solve the system of differential equations

\[x_1'(t) = 3x_1(t) + 3x_2(t), \]
\[x_2'(t) = -2x_1(t) - 4x_2(t) \]

with initial conditions

\[x_1(0) = 1, \quad x_2(0) = 3. \]

Show your work.

Solution:
Problem 2. (20 points)

(a) Find three functions $y_1(x), y_2(x), y_3(x)$ defined on $(-\infty, \infty)$ whose Wronskian is given by

$$W(y_1, y_2, y_3)(x) = e^{4x}.$$

(b) Are the functions y_1, y_2, y_3 that you found linearly independent on $(-\infty, \infty)$? Justify your answer.

Solution:
Problem 3. (20 points)
Find a homogeneous third-order linear differential equation with constant coefficients that has

\[y(x) = 3 \cdot e^{-x} - \cos(2x) \]

as a solution. Explain how you found it.

What is the general solution of that differential equation?

Solution:
Problem 4. (20 points)
For the function $f(x) = e^{x/\pi}$, draw a careful sketch of the graphs of the functions to which the following Fourier series converge on the interval $[0, 4\pi]$:
(a) the Fourier sine series of f on $[0, \pi]$;
(b) the Fourier cosine series of f on $[0, \pi]$;
(c) the ordinary Fourier series of f on $[-\pi, \pi]$.
Pay particular attention to the discontinuities of the functions.
Note: you are not asked to compute the coefficients of those Fourier series.

Solution:
Problem 5. (20 points)
Find a function $u = u(x, t)$, defined for $0 \leq x \leq \pi$ and $t \geq 0$, satisfying the partial differential equation
\begin{equation}
(*) \quad u_{xx} = -u_{tt} \quad (0 < x < \pi, \quad t > 0),
\end{equation}
with boundary conditions
\begin{equation*}
u(0, t) = u(\pi, t) = 0 \quad (t > 0)
\end{equation*}
and initial conditions
\begin{equation*}
u(x, 0) = \sin(3x), \quad \nu_t(x, 0) = 0 \quad (0 < x < \pi).
\end{equation*}

Hint: look for a function of the form $u(x, t) = X(x)T(t)$, as in sec. 10.6 of the textbook; but note that $(*)$ is *not* a wave equation, because of the minus sign.

Solution: