Problem 1 [20P]

(a) Consider the 3-place truth function \(f : \{T, F\}^3 \to \{0, 1\} \) given by

\[
\begin{array}{ccc|c}
A_0 & A_1 & A_2 & f(A_0, A_1, A_2) \\
T & T & T & T \\
T & T & F & F \\
T & F & T & F \\
T & F & F & T \\
F & T & T & F \\
F & T & F & F \\
F & F & T & F \\
F & F & F & T \\
\end{array}
\]

Find a formula \(\varphi = \varphi(A_0, A_1, A_2) \) such that \(f_\varphi = f \), where \(f_\varphi \) is the truth function derived from \(\varphi \).

You can use the connectives \(\land \) (AND), \(\lor \) (OR), \(\to \), and \(\neg \).

(b) Does there exist a propositional formula \(\varphi \) such that \(\varphi \) is a contradiction and there exists a propositional variable \(A_i \) for which the following holds: If we replace every occurrence of \(A_i \) in \(\varphi \) by \(\neg A_i \), we obtain a new formula \(\varphi' \) that is a tautology?

Give an example or show that such a formula does not exist.

Problem 2 [25P]

(a) Suppose \(\mathcal{M} = (M, I) \) is an \(\mathcal{L_\mathcal{A}} \)-structure. State what it means that a subset \(Y \subseteq M \) is definable from parameters in \(X \subseteq M \).

(b) Let \(\mathcal{A} = \{+, -, \cdot, 0, 1\} \), where \(+, -, \cdot\) are binary function symbols, and \(0, 1\) are constant symbols. Consider the \(\mathcal{L_A} \)-structure \(\mathbb{R} = (\mathbb{R}, +, -, \cdot, 0, 1) \).

- Show that the set \(\{ x \in \mathbb{R} : x > 0 \} \) is definable in \(\mathbb{R} \) (without parameters). Infer that the relation \(\{(x, y) \in \mathbb{R}^2 : x < y\} \) is definable in \(\mathbb{R} \), too.
- Show that for every rational number \(q \), the set \(\{q\} \) is definable without parameters in \(\mathbb{R} \).
- Show that for any two \(a, b \in \mathbb{R}, a \neq b \), the 1-types of \(a \) and \(b \) in \(\mathbb{R} \) are different.

(c – Extra Credit) Give an example of a finite language \(\mathcal{L_A} \) and an infinite \(\mathcal{L_A} \)-structure \(\mathcal{M} \) with exactly four definable (without parameters) subsets of \(M \). Justify your answer.

Problem 3 [15P]

Using the axiom system for first order logic introduced in class (axioms are given below), show that for every term \(\tau \) in \(\mathcal{L} \),

\[\vdash (\tau \equiv \tau), \]

i.e. there exists a proof of \((\tau \equiv \tau) \) that uses only the axioms and consequences thereof. Justify your steps.
Problem 4 [40P]

(a) State the *Compactness Theorem* for first order logic.

(b) Suppose \(T_1 \subseteq T_2 \subseteq T_3 \subseteq \ldots \) is a strictly increasing sequence of \(\mathcal{L}_A \)-theories. Suppose further that each \(T_i \) is *closed under logical consequences*, i.e. for each \(i \), if \(T_i \models \sigma \) for some sentence \(\sigma \), then \(\sigma \in T_i \).

- Show that \(\bigcup_{i \in \mathbb{N}} T_i \) is consistent.
- Show that \(\bigcup_{i \in \mathbb{N}} T_i \) is not finitely axiomatizable, i.e. there does not exist a finite set of sentences \(\Gamma \) such that \(M \models \Gamma \) if and only if \(M \models \bigcup_{i \in \mathbb{N}} T_i \).

(c) State the definition of a *complete theory*.

(d) Give an example of a language \(\mathcal{L}_A \) and an \(\mathcal{L}_A \)-theory that is complete.

(e – Extra Credit) Is the theory \(\bigcup_{i \in \mathbb{N}} T_i \) from part (b) necessarily complete? Prove or give a counterexample.

Axiom System for First Order Logic

The set of logical axioms, denoted \(\Delta \), is the smallest set of \(\mathcal{L} \) formulas which satisfies the following closure properties.

1. (Instances of Propositional Tautologies) Suppose that \(\phi_1, \phi_2 \) and \(\phi_3 \) are \(\mathcal{L} \) formulas. Then each of the following \(\mathcal{L} \) formulas is a logical axiom:

 (a) \(((\phi_1 \rightarrow (\phi_2 \rightarrow \phi_3)) \rightarrow ((\phi_1 \rightarrow \phi_2) \rightarrow (\phi_1 \rightarrow \phi_3))) \)

 (b) \(\phi_1 \rightarrow \phi_1 \)

 (c) \(\phi_1 \rightarrow (\phi_2 \rightarrow \phi_1) \)

 (d) \(\phi_1 \rightarrow ((\neg \phi_1) \rightarrow \phi_2)) \)

 (e) \(((\neg \phi_1) \rightarrow (\phi_1) \rightarrow \phi_1) \)

 (f) \(((\neg \phi_1) \rightarrow (\phi_1) \rightarrow \phi_2)) \)

 (g) \((\phi_1 \rightarrow ((\neg \phi_2) \rightarrow (- (\phi_1 \rightarrow \phi_2)))) \)

2. Suppose that \(\phi \) is an \(\mathcal{L} \) formula, \(\tau \) is a term, and that \(\tau \) is substitutable for \(x_i \) in \(\phi \). Then

 \(((\forall x_i \phi) \rightarrow \phi(x_i; \tau)) \in \Delta. \)

3. Suppose that \(\phi_1 \) and \(\phi_2 \) are \(\mathcal{L} \) formulas. Then

 \(((\forall x_i (\phi_1 \rightarrow \phi_2)) \rightarrow ((\forall x_i \phi_1) \rightarrow (\forall x_i \phi_2))) \in \Delta. \)

4. Suppose that \(\phi \) is an \(\mathcal{L} \) formula and that \(x_i \) is not a free variable of \(\phi \). Then

 \((\phi \rightarrow (\forall x_i \phi)) \in \Delta. \)

5. For every variable \(x_i, (x_i = x_i) \in \Delta. \)

6. Suppose that \(\phi_1 \) and \(\phi_2 \) are \(\mathcal{L} \) formulas and that \(x_j \) is substitutable for \(x_i \) in \(\phi_1 \) and in \(\phi_2 \).

 If \(\phi_2(x_i; x_j) = \phi_1(x_i; x_j) \),
 then \(((x_i = x_i) \rightarrow (\phi_1 \rightarrow \phi_2)) \in \Delta. \)

7. Suppose that \(\phi \in \Delta. \) Then \((\forall x_i \phi) \in \Delta. \)