1. a) Show that the parametrized surface
 \[X(u,v) = (v \cos u, v \sin u, au) \], \(a > 0 \) is regular.

 b) Compute its normal vector \(N(u,v) \).

 c) Using eventually b), prove that the angle formed by the tangent plane with the \(z \)-axis along the coordinate line \(u = u_0 \) is proportional to the distance from the corresponding point \(X(u_0, v) \) to the \(z \)-axis.

2. a) Show that \(X : (0, \infty) \times (0,2\pi) \to \mathbb{R}^3 \)
 \[X(u,v) = (u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha) \],
 where \(\alpha \) is constant, is a parametrization of the cone with \(2\alpha \) as the angle at the vertex.

 b) In this coordinate neighborhood, prove that the curve
 \[\alpha(t) = X(e^t \sin \alpha \cot \beta, t) \]
 where \(c, \beta \) are constant, intersects the generators of the cone \((v = \text{const.})\) under the angle \(\beta \).

3. Let \(S \) be a regular surface covered by two coordinate neighborhoods \(V_1 \) and \(V_2 \), for which \(V_1 \cap V_2 \) has two connected components \(W_1 \) and \(W_2 \).
The Jacobian of the change of coordinates is positive in W_1 and negative in W_2. Prove that S is unorientable.