1. (40 points) Define the following. You do not need to define terms used in those definitions.
 (a). Covariant functor.
 (b). Free group (not necessarily abelian).
 (c). Factorial ring.
 (d). Purely inseparable element.

2. (35 points) Show that all groups of order 588 = 2² · 3 · 7² are solvable.
 In doing this, you may use the fact that all groups of order 12 are solvable.

3. (25 points) Show that an object representing a covariant functor (if it exists) is unique up to
 unique isomorphism.
 (This was proved in class. In proving it here, you may use any results proved in class up to
 the point where this result was stated.)

4. (30 points) Let \(m \) be a maximal ideal in a commutative ring \(A \). Show that \(m \) is a prime
 ideal.
 (This was proved in the book, and also in class, but by a different method. In proving it
 here, you may use any results from group theory, any definitions in ring theory, and easy
 identities in ring theory such as \(0x = 0 \), but no other results from ring theory.)

5. (30 points) Show that any module \(M \) over a ring \(A \) is isomorphic to a direct limit of finitely
 generated \(A \)-modules.

6. (30 points) A field \(k \) is said to be perfect if it has characteristic 0, or if it has characteristic
 \(p \neq 0 \) and all elements of \(k \) have a \(p^{th} \) root in \(k \).
 Show that if \(k \) is a perfect field, then all algebraic extensions of \(k \) are separable.

7. (40 points) (a). Show that the polynomial \(X^5 - 2 \) is irreducible over \(\mathbb{Q} \).
 (b). Let \(E \) be the splitting field of \(X^5 - 2 \) over \(\mathbb{Q} \). Describe this field (e.g., generators,
 degree).
 (c). Describe the Galois group \(Gal(E/\mathbb{Q}) \) as an abstract group, and give explicit generators
 of this group as a subgroup of \(S_5 \).