Math H53 Midterm Exam 1

October 3rd, 2003

Dr. K. G. Hare

1 a: (5 pts) Let \(f(t) = (3t^2, 2t^3) \). Find the length of \(f(t) \) between \(0 \leq t \leq 2 \).

b: (5 pts) Find all solutions to \(z^4 = -4 \).

2: (5 pts) Let \(f \) be a harmonic function with continuous partial derivatives of any order. Further let \(f_x(x, y) = 2x + y \). Find \(f_y(x, y) \).

3: (5 pts) Let \(r(\theta) = 4 \sin(3\theta) \). Find the area of the curve in one loop.

4 a: (5 pts) Consider the function \(f(x, y) = x^4 + y^4 + x^2y^2 - xy + 3 \). Find the direction of steepest descent from the point \((1, 2) \)

b: (5 pts) Given
\[
2x + 4x + 4y^2 - 24y = x^2 + 2x
\]
Convert this to standard form. What sort of quadratic surface is this. (If you can’t remember the name, just draw a picture)

5: (5 pts) Let \(V \) be the vector space of polynomials. Define the dot product (inner product) between two vectors \(f \) and \(g \) as
\[
\int_0^1 f(x)g(x)dx
\]
Find \(g(x) \) orthogonal to \(f(x) = x \).

6: (5 pts) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a continuous functions, with continuous partial derivatives. Let \(\{(x_i, y_i)\}_{i=0}^{\infty} \) be a sequence of local maximums. Further let \(\lim_{i\to\infty} x_i = c \) and \(\lim_{i\to\infty} y_i = d \). Show that \(f \) has a critical point at \((c, d) \).

Bonus: (2 pts) Give an example to show that \((c, d) \) can be a local minimum.