Final Exam, Thursday, 12/11/03
8:10AM – 11:00AM
Math 32, Fall 2003
Instructor: Benjamin Johnson

Student’s name: ________________________________

GSI: ________________________________

Do not open your exam until instructed to do so.
Please read all directions carefully.
Please simplify your answers as much as possible.
Please draw a box around all your final answers.
You may not use a calculator on this exam.

The exam consists of 15 questions, plus one bonus question. The point values for each question are indicated below, and also before the problem numbers.
You will have 2 hours and 50 minutes to complete this exam. Please work carefully, and check your answers when you are done. Remember not to spend too much time on any one problem. If you get stuck on a difficult problem, move on to a problem that you know how to do, and come back to the difficult problem later.
If you finish your exam before 10:50AM, you may turn in your exam and leave the room. Solution sheets will be distributed to all those who turn in their exams after 10:00AM. If you leave before 10:00AM, you will not receive a solution sheet. Once you leave the room and collect a solution sheet, you may not return until after the exam is over and all the exams have been collected. Also, you may not leave during the last 10 minutes of the exam.

Please do not write anything below this line.

Problem 1 ______ (out of 6) Problem 10 ______ (out of 6)
Problem 2 ______ (out of 6) Problem 11 ______ (out of 6)
Problem 3 ______ (out of 6) Problem 12 ______ (out of 8)
Problem 4 ______ (out of 6) Problem 13 ______ (out of 8)
Problem 5 ______ (out of 6) Problem 14 ______ (out of 8)
Problem 6 ______ (out of 6) Problem 15 ______ (out of 8)
Problem 7 ______ (out of 6) Bonus Problem ______ (out of 6)
Problem 8 ______ (out of 8) Total Score ______ (out of 100)
Problem 1 (6 points)

Solve the following quadratic equation using any method you choose.

\[x^2 + \frac{7}{2}x - 2 = 0 \]

Problem 2 (6 points)

Find an equation of the line passing through the points (5,3) and (7,-1). Please express your answer in slope – intercept form.
Problem 3 (6 points)

Let $f(x) = x^2$. Let $g(x) = 3x + 1$. Find an explicit defining formula for the function $f \circ g^{-1}$.

Problem 4 (6 points)

What is the largest possible area for a rectangle with perimeter 80 meters?
Problem 5 (6 points)

Sketch a graph of the function \(g(x) = \frac{2x - 5}{x - 3} \). Be sure to include any important features in your graph including any vertical asymptotes, horizontal asymptotes, x-intercepts, or y-intercepts.

Problem 6 (6 points)

Solve the following logarithmic equation.

\[\log_{10}(x - 6) + \log_{10}(x + 3) = 1 \]
Problem 7 (6 points)

Solve the following inequality.

$$\log_2 \left(\frac{2x-1}{x-2} \right) < 0$$
Problem 8 (8 points)

Complete the following table.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\theta & 60^\circ & 3\pi/2 & 300^\circ & \pi/4 \\
\hline
\sin \theta & & & & \\
\hline
\cos \theta & & & & \\
\hline
\tan \theta & & & & \\
\hline
\csc \theta & & & & \\
\hline
\sec \theta & & & & \\
\hline
\cot \theta & & & & \\
\hline
\end{array}
\]

Problem 9 (6 points)

A block attached to a spring moves up and down in simple harmonic motion governed by the equation \(s = 2 \sin \left(\frac{\pi t}{3} \right) \).

a. (3 points) State the Amplitude, Period and Phase Shift for this function.
b. (3 points) Sketch a graph of the height of the block for two full periods, starting at $t = 0$.

Problem 10 (6 points)

A building contractor wants to put a fence around the perimeter of a lot that has the shape of a right triangle. One angle of the triangle is 45° and the hypotenuse is 30 meters.

a. (3 points) Find the length of fencing required.

b. (3 points) Find the area of the lot.
Problem 11 (6 points)

Prove
\[
\sin(2\theta) = \frac{2\tan\theta}{1+\tan^2\theta}.
\]

(Hint: start with the right side, and simplify to obtain the left side).

Problem 12 (8 points)

Let \(z = 4 - 3i \), and let \(w = 1 + i \). Express each of the following in standard rectangular form, (i.e. in the form \(a + bi \), where \(a \) and \(b \) are real numbers).

a. \(\bar{z} \)

b. \(z + w \)

c. \(zw \)
d. \(\frac{z}{w} \)

Problem 13 (8 points)

Use mathematical induction to prove that for every positive integer \(n \), \(\sum_{i=1}^{n}(2i-1)=n^2 \).
Problem 14 (8 points)

What is the coefficient of x^{10} in the expansion of $(x+2)^{12}$? (Hint: The easiest way to answer this question is to apply the binomial theorem to the expression $(x+2)^{12}$, considering only the relevant term in the expansion. You may receive some partial credit for stating the binomial theorem correctly.)
Problem 15 (8 points)

Compute \((\sqrt{3} + i)^6\). (Hint: the easy way to do this problem is to first convert \(\sqrt{3} + i\) to trigonometric form, and then use DeMoivre's theorem).
Bonus (6 points)

Let \(f(x) = 2x^5 + 13x^4 + 50x^3 + 82x^2 + 56x + 13 \). Express \(f(x) \) as the product of 5 linear factors.