1. (15%) Please determine if the following statements are true or not. Give a brief reasoning for each of your answers.
 (a) All the unitary operators on a finite dimensional vector space over \mathbb{C} are normal. (3%)
 (b) All $n \times n$ matrices in $M_{n \times n} (\mathbb{R})$ have their associated Jordan canonical forms over \mathbb{R}. (3%)
 (c) Let V be a finite dimensional inner product space and $T \in \mathcal{L}(V)$. Then $R(T^*) = N(T)$. (3%)
 (d) Let V be a finite dimensional inner product space. An operator $T \in \mathcal{L}(V)$ is self-adjoint iff $[T]_{\beta} = [T]_{\beta}^*$ for all the ordered bases β. (3%)
 (e) All the orthogonal transformations on a finite dimensional vector space over \mathbb{R} are onto. (3%)

2. (20%) (a) Prove Schur's theorem, i.e. when the characteristic polynomial of a linear transformation $T \in \mathcal{L}(V)$ (on a finite dimensional inner product vector space V over $F = \mathbb{R}$ or \mathbb{C}) splits, then there exists an orthonormal basis β such that $[T]_{\beta}$ is upper-triangular. (14%)
 (b) Prove that a self-adjoint operator T over \mathbb{C} must be diagonalizable by an orthonormal basis. i.e. \exists an orthonormal basis β such that $[T]_{\beta}$ is diagonal. (6%)

3. (25%) (a) Consider the matrix $A = \begin{pmatrix} 0 & 4 & 0 \\ 4 & 0 & 4 \\ 0 & 4 & 0 \end{pmatrix}$.
 Show that A is normal and diagonalize A by an orthogonal matrix. (10%)
 (b) For the same A, write $I_n = \lambda_1 T_1 + \lambda_2 T_2 + \lambda_3 T_3$ and find T_1, T_2, T_3 explicitly. (5%)
 (c) Let $T : P_3(\mathbb{R}) \rightarrow P_4(\mathbb{R})$ be $T(f) = f'' + f$. Determine the dot diagram and write down the Jordan canonical form of T. (10%)

4. (20%) (a) Let U be an unitary operator upon an inner product space $(V, \langle \cdot, \cdot \rangle)$ over \mathbb{R}, i.e. $||U(x)|| = ||x||$ for all $x \in V$.
 Prove that $\langle U(x), U(y) \rangle = \langle x, y \rangle$ for all x, y. (6%)
 (b) Suppose that $T_1, T_2 \in \mathcal{L}(V)$ are linear operators over an inner product space $(V, \langle \cdot, \cdot \rangle)$ such that the identity $\langle x, T_1(y) \rangle = \langle x, T_2(y) \rangle$ holds for all $x, y \in V$. Show that $T_1 = T_2$. (5%)
 (c) Let W be a finite dimensional subspace of the inner product space $(V, \langle \cdot, \cdot \rangle)$. Prove that an arbitrary vector $x \in V$ can be decomposed uniquely into the form $x = u + z$, where $u \in W$ and $z \in W^\perp$. (9%)

5. (20%) (a) Prove that the eigenvalues of a self-adjoint operator are all real. (7%)
 (b) Show that all eigenvalues of anti-self-adjoint $T^* = -T$ operators are purely imaginary (i.e. $\sqrt{-\lambda} r \in \mathbb{R}$). (4%)
 (c) Determine all the operators $T \in \mathcal{L}(V)$ with $T^3 = T$, $T^* = -T$. What can T be? Write down your argument. (9%)

6. (25%) Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product vector space over \mathbb{R}.
 (a) Prove that a linear functional $f \in \mathcal{L}(V, \mathbb{R})$ can always be written as $f(x) = \langle x, v \rangle$ for some $v \in V$. (14%)
 (b) Let $\beta = \{v_1, v_2, \cdots, v_n\}$ be an orthonormal basis of $(V, \langle \cdot, \cdot \rangle)$. Prove that $\langle x, y \rangle = \langle x , [y]_{\beta} \rangle$ for all $x, y \in V$. (6%)
 For an $x \in V$, $[x]_{\beta}$ means the column vector of coordinates relative to β.
 (c) Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ be defined by $T(a, b, c, d) = (a + b, c + d, a - c, a + b + c + d)$. Please find $T^* : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ explicitly. (5%)
7. (15%) (a) Let W_1, W_2 be two finite dimensional vector subspaces of V. Prove that $\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$. (9%)

(b) Let β_1, β_2 be bases of W_1 and W_2, respectively. Show that when $W_1 \cap W_2 = \{0\}$, $\beta_1 \cup \beta_2$ is a basis of $W_1 + W_2$. (6%)

8. (15%) Let V be a finite dimensional vector space over \mathbb{R}.

(a) Prove that when W is a T invariant subspace, extend a basis γ of W to a basis β of V. Prove that $[T]_{\beta}$ is of the following form, (7%)

$$\begin{pmatrix}
[T] & B \\
0 & C
\end{pmatrix}$$

(b) Let W be a T-invariant sub-space of V. Prove that the characteristic polynomial of T_W divides the characteristic polynomial of $T \in \mathcal{L}(V)$. (8%)

9. (15%) (a) Prove that for $A \in M_{n \times n}(\mathbb{R})$, $\dim_{\mathbb{R}} \text{span}(\{I, A, A^2, \cdots\}) \leq n$. (9%)

(b) Give an $n \times n$ example that $\dim_{\mathbb{R}} \text{span}(\{I, A, A^2, \cdots\}) = n$. (6%)

10. (15%) Prove the following statement: Let V and W be finite dimensional vector spaces having ordered bases β and γ, respectively and let $T \in \mathcal{L}(V, W)$. Then for all $u \in V$, we have $[T(u)]_{\gamma} = [T]_{\beta}^\gamma[u]_\beta$.

11. (15%) (a) Prove that two finite dimensional vector spaces V and W are isomorphic to each other if and only if $\dim(V) = \dim(W)$. (10%)

(b) Show that a linear transformation $T \in \mathcal{L}(V, W)$ cannot be onto if $\dim(V) < \dim(W)$. (5%)