1. (20%) A rhombus is a quadrilateral with four congruent sides. Prove that the diagonals of a rhombus are perpendicular to each other.

2. (25%) Assume you know that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half the length of the third side. Prove that if BB' and CC' are medians of triangle ABC, then their point of intersection G satisfies $|BG| = 2|GB'|$, $|CG| = 2|GC'|$.

3. (30%) Assume you know that an isometry of \mathbb{R}^2 with three distinct fixed points is necessarily the identity map. Prove that every isometry of \mathbb{R}^2 is a bijection.

4. (25%) Given $\angle AOB$, where O is the origin of \mathbb{R}^2. Let α, β be positive numbers and let $P = \alpha A + \beta B$. Prove that P is in the interior of $\angle AOB$. Is the positivity of α and β really necessary for this conclusion to hold?