1. (27 points, 9 points each.) Find the following. If the answer to a question is a set, you should give it by listing or describing its elements in set brackets, \{ ... \}.

(a) The kernel of the homomorphism from \(\mathbb{Z} \) to \(D_{10} \) (the group of symmetries of a pentagon) taking each \(n \in \mathbb{Z} \) to rotation by \(n(4\pi/5) \) radians.

(b) The coset of \(A_3 \) in \(S_3 \) that contains \((1 \ 2) \).

(c) The number of fixed points of \(\sigma^3 \), if \(\sigma \) is an element of \(S_n \) whose complete cycle decomposition consists of \(a \) cycles of length 3, \(b \) cycles of length 2, and \(n - 3a - 2b \) cycles of length 1.

2. (36 points; 9 points each.) For each of the items listed below, either give an example, or give a brief reason why no example exists. (If you give an example, you do not have to prove that it has the property stated. Examples should be specific for full credit; i.e., even if there are many objects of a given sort, you should name one.)

(a) A simple non-cyclic group.

(b) A subgroup of \(\mathbb{Z} \times \mathbb{Z} \) that is not normal.

(c) An injective (i.e., one-to-one) homomorphism \(f: \mathbb{Z} \to \mathbb{R}^\times \). (Recall that \(\mathbb{R}^\times \) denotes the group of nonzero real numbers under multiplication.)

(d) A group \(G \) and a subgroup \(H \), such that \(H \) is not the kernel of any homomorphism with domain \(G \).

3. (14 points.) Let \(G \) and \(H \) be groups, \(f: G \to H \) an injective (i.e., one-to-one) homomorphism, and \(g \in G \) an element of finite order \(n \). Show that \(f(g) \) also has order \(n \).

4. (14 points.) Let \(G \) be a group. Recall that \(Z(G) \), the center of \(G \), means \(\{ z \in G : \forall g \in G, \ zg = gz \} \). Show that \(Z(G) \) is a subgroup of \(G \). (Rotman describes this as "easy to see". I am asking you to supply the details.)

5. (9 points.) Let \(G \) be a group which acts on a set \(X \), and let \(x, y \in X \). Show that if \(\mathcal{O}(x) \) and \(\mathcal{O}(y) \) have an element in common, then they are equal. (Recall that \(\mathcal{O}(x) \) denotes \(\{ gx : g \in G \} \). The result you are to prove is part of a result proved by Rotman, that \(X \) is the disjoint union of the orbits. Hence you may not call on that result in proving this.)