
Lecture 3

NEWTON–OKOUNKOV BODIES AND

ISOPERIMETRIC TYPE INEQUALITIES

IN ALGEBRAIC GEOMETRY

Askold Khovanskii
University of Toronto

March 20, 2025

1



PROBLEM ON THE NUMBER OF SOLUTIONS

A Laurent polynomial P with a support Supp(P ) = A ⊂ Zn is a
function P =

∑
m∈A cmxm, where A ⊂ Zn is a finite set, cm ̸= 0

is a complex number, and xm = x
m1
1 . . . xmn

n .

The Newton polyhedron∆(P ) is the convex hull of A = Supp(P ).

Let LA be the space generated by xm, where m ∈ A, i.e., P ∈
LA ⇔ SuppP ⊂ A.

Problem. How many solutions in (C∗)n has a system of equa-
tions

P1 = · · · = Pn = 0,

where P1, . . . , Pn are generic Laurent polynomials with the fixed
supports A1, . . . , An ⊂ Zn?
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THE BKK THEOREM

Theorem (Kouchnirenko). If all Laurent polynomials Pi have
the same support A, i.e., Supp(Pi) = Ai = A, then the number
of solutions is equal to n!V (∆), where V (∆) is the volume of
the convex hull ∆ of the set A, i.e., ∆ = ∆(Pi).

Theorem (Bernstein). The number of solutions is equal to
n!Vn(∆1, . . . ,∆n), where Vn(∆1, . . . ,∆n) is the mixed volume
of the polyhedra ∆i = ∆(Pi) (in the other words, of the convex
hulls ∆i of the sets Ai).

These theorems are often referred to as the BKK (Bernstein, Koush-
nirenko, Khovanskii) theorem. In the lecture, I will discuss wide
generalizations of the BKK theorem and the interplay between
algebra and geometry suggested by these generalizations.
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SUBGROUPS IN THE LATTICE Rn

Let b = {b1, . . . , br} be a sequence of r ≤ n natural numbers,
such that bi+1 is divisible by bi for each i < r.

A group Hb ⊂ Zn is the group of points x = (x1, . . . , xn) ∈ Zn,
such that xi is divisible by bi for i ≤ r and xi = 0 for i > r.

Theorem. Any group H ⊂ Zn by an isomorphism of Zn

can be reduced to a unique subgroup Hb. Thus, the sequence b
provides an invariant separating nonequivalent subgroup in Zn.

Corollary. To a commutative group G with n generators one
assigns a unique sequence b, such that G is equal to the sum
of n − r copies of Z and the groups Z/biZ for each member
bi of b.

To prove Corollary, one represents G as a factor-group Zn/H and
applies Theorem to the group H ⊂ Zn.
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FINITELY GENERATED SEMIGROUPS IN Zn

For a semigroup S ⊂ Zn, generated by a finite set A ⊂ S, let:

1) G(S) ⊂ Zn be the group generated by A ⊂ S,

2) L(S) ⊂ Rn be the subspace spanned by A ⊂ S,

3) C(S) be the polyhedral convex cone spanned by A ⊂ S.

The inclusion S ⊂ C(S) ∩G(S) follows from definitions.

Slightly weakened, inclusion in the opposite direction also holds.

Theorem A. There is a vector a ∈ S such that the intersec-
tion of the shifted cone (C(S)+a) with the group G(S) belongs
to S.
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SUMS OF FINITE SET

The sum of subsets A,B in an abelian group G is the set C of
points c representable as c = a + b, where a ∈ A, b ∈ B.

For a finite set A ⊂ Zn, let k ∗ A be the sum of k copies of A.

Theorem. If the differences (x− y) of x, y ∈ A generate Zn,
then

lim
k→∞

#(k ∗ A)
kn

= V (∆(A)),

where V (∆(A)) is the volume of the convex hull ∆(A) of A.

Proof uses Theorem A for the semigroup SA ⊂ Z×Zn consisting
of points (k, x) ∈ Z× Zn such that x ∈ k ∗ A and the following:

Lemma. For a convex bounded domain U ⊂ Rn we have

lim
k→∞

#(kU ∩ Zn)

kn
= V (U).
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PROOF OF KOUSHNIRENKO’S THEOREM

Let A ⊂ Zn be a set containing #A = N characters {χi} of
T = (C∗)n and let PN−1 be a projective space whose homogeneous
coordinate are in one-to-one correspondence with the set {χi}. Let
ΦA : T → PN−1 be a map which sends x ∈ T to

χ1(x) : · · · : χN (x) ∈ PN−1.

Let Y ⊂ PN−1 be the closure of the image ΦA(T ) of I in PN−1.
The value atm of theHilbert function HY of Y is the dimension of
space Φ∗

A(L
m), where Lm is the space of homogeneous polynomials

in {χI} of degree m. By construction,

HY (m) = #(m ∗ A), thus, lim
k→∞

H(k)

kn
= V (∆(A)),

where V (∆(A)) is the volume of the convex hull ∆(A) of A.

The Hilbert theorem on degree of variety completes the proof.
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SEMIGROUP K(X)

Let X be an irreducible n-dimensional variety.

A set K(X) of nonzero finite dimensional spaces of rational func-
tions on X is a multiplicative semigroup with the following multi-
plication: the product L1L2 of L1, L2 ∈ K(X) is the space L1L2
generated by functions fg, where f ∈ L1, g ∈ L2.

A Zariski open set U ⊂ X is admissible for an n-tuple of spaces
L1, . . . , Ln ∈ K(X) if the following conditions hold:

a) U does not contain singular points of X ;

b) all functions from L1, . . . , Ln are regular on U ;

c) U does not contain base points of a space Li, i.e., for any i,
0 ≤ i ≤ n, and any x ∈ U these is f ∈ Li such that f (x) ̸= 0.
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INTERSECTION INDEX ON K(X)

For a vector-function f = (f1, . . . , fn), where fi ∈ Li, and an
admissible set U for L1, . . . , Ln, denote by #(f(x) = 0|x ∈ U)
the number of simple roots x ∈ U of the system

f1(x) = · · · = fn(x) = 0.

Theorem. For a given admissible set U and generic vector-
function f , the number #(f(x) = 0|x ∈ U) depends only on
n-tuple of spaces L1, . . . , Ln.

The number from Theorem is called the intersection index of the
spaces L1, . . . , Ln. We denote it by [L1, . . . , Ln].

Example. The BKK theorem computes the intersection index
[LA1

, . . . , LAn
] on the torus X = (C∗)n.
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PROPERTIES OF THE INTERSECTION INDEX

Let Deg(L) = [L, . . . , L] be the self-intersection index of L.

Theorem. The following properties hold:

1. [L1, . . . , Ln] is symmetric in permuting the spaces L1, . . . , Ln;

2. [L1, . . . , Ln] is linear in each argument. For example,

[L′
1L

′′
1 , L2, . . . , Ln] = [L′

1, L2, . . . , Ln] + [L′′
1 , L2, . . . , Ln].

q

Easy to prove the following theorem:

Theorem. The intersection index is nonnegative, i.e.,

[L1, . . . , Ln] ≥ 0,

and monotone, i.e., if L′
1 ⊂ L1, . . . , L

′
n ⊂ Ln, then

[L′
1, . . . , L

′
n] ≤ [L1, . . . , Ln].
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REGULARIZATION OF SUB-SEMIGROUPS IN Zn

For a semigroup S ⊂ Zn of integral points, let:

1) G(S) ⊂ Zn be the group generated by S;

2) L(S) ⊂ Rn be the subspace spanned by S;

3) C(S) be the closure of the convex spanned by S.

The regularization S̃ of S is the semigroup C(S) ∩G(S).

Theorem. Let C ′ ⊂ C(S) be a pointed convex cone which
intersects the boundary (in the topology of the linear space
L(S)) of the cone C(S) only at the origin.

Then there exists a constant N > 0 (depending on C ′) such
that any point in the group G(S) which lies in C ′ and whose
distance from the origin is bigger than N belongs to S.
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NEWTON–OKOUNKOV BODY (NO BODY)

Let S ⊂ Z× Zn be a semigroup such that:

a) (t, x) ∈ S ⇒ t ≥ 0; b) C(S) ∩ {t = 0} = {0};
c) S ∩ {t = 1} ≠ ∅.

The Hilbert function HS of S is the function on natural
numbers defined by an identity HS(k) = #({t = k} ∩ S).

The Newton–Okounkov body (NO body) of S is the
convex body ∆(S) = {t = 1} ∩ C(S).

Theorem. The function HS(k) grows like aqk
q, where

q = dimR∆(S)

and aq is equal to the q-dimensional volume of ∆(S) divide by
order of the factor-group (0,Zn)/(0,Zn) ∩ S.
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Zn-VALUED VALUATION ON C(X) \ {0}

Let Zn be the lattice equipped with the lexicographic order >.

A surjective map v : C|(X) \ {0} → Zn is a Zn-valuation if

v(fg) = v(f ) + v(g) and v(f + g) ≥ min{v(f ), v(g)}.

Example. Let a ∈ X be a smooth point and let x1, . . . , xn be a
system of coordinates about a such that x1(a) = · · · = xn(a) = 0.

If f is a regular functions at a, define v(f ) as m ∈ Zn, where xm

is the smallest monomial which appears with nonzero coefficient
in the Taylor series of f about the point a.

If f, g are regular at a, then v(f/g) is defined as v(f )− v(g).
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NO BODY ∆(L) OF L ∈ K(X)

Spaces L1, L2 ∈ K(X) are equivalent if there is M ∈ K(X) such
that L1M = L2M . For every L ∈ K(X), there is the space
L ∈ K(X) which is the biggest by inclusion among all spaces
equivalent to L.

A Zn-valuation v assigns to a space L ∈ K(X) the semigroup

S(L) ⊂ Z× Zn as follows: (k, x) belongs to S(L) if x ∈ v(Lk).

The NO body of S(L) is called the NO body ∆(L) of L.

Main Theorem. The following relations hold:

1. for any L ∈ K(X), we have:

[L, . . . , L] = n!V (∆(L));

2. for any L1, L2 ∈ K(X), we have:

∆(L1L2) ⊃ ∆(L1) + ∆(L2).
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MIXED VOLUME

On the additive semigroup of convex bodies in Rn, the vol-
ume is a homogeneous polynomial of degree n. It means that
if ∆1, . . . ,∆m ⊂ Rn are convex bodies, then the volume of ∆ =
k1∆1 + · · · + km∆m is a homogeneous polynomial of degree n in
m-tuples of natural numbers (k1, . . . , km).

This property implies the existence and uniqueness of the mixed
volume Vn(∆1, . . . ,∆n) on n-tuples of convex bodies such that:

1. on the diagonal it coincides with the volume, i.e.,
V (∆, . . . ,∆) is the volume of ∆;

2. V is symmetric in permuting the variables;

3. V is linear in each argument; for example:

V (∆′
1+∆

′′
1 ,∆2, . . . ,∆n) = V (∆′

1,∆2, . . .∆n)+V (∆′′
1 ,∆2, . . .∆n);
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PROPERTIES OF MIXED VOLUME

The following theorem is easy to prove.

Theorem. The mixed volume Vn is:

1. nonnegative, i.e., the mixed volume of any n-tuple ∆1, . . . ,∆n

of convex bodies is nonnegative;

2. monotone, i.e., if ∆′
1 ⊂ ∆1, . . . ,∆

′
n ⊂ ∆n, then

Vn(∆
′
1, . . . ,∆

′
n) ≤ Vn(∆1, . . . ,∆n).

Example. Let B ⊂ Rn be a unit ball centered at the origin.
Then for any convex body ∆ ⊂ Rn the mixed volume

Vn(∆1, . . . ,∆n),

where ∆1 = · · · = ∆n−1 = ∆ and ∆n = B,

is equal to the (n− 1)-dimensional volume of the boundary ∂∆
of ∆ multiplied by 1

n.
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CLASSICAL GEOMETRIC INEQUALITIES

Theorem(Brunn–Minkowski inequality). If ∆1,∆2 are
convex bodies in Rn, then

V
1
n(∆1) + V

1
n(∆2) ≤ V

1
n(∆1 +∆2). (1)

The Brunn–Minkowski inequality has visual geometric proofs.

Theorem (Alexandrov–Fenchel inequality). For any n-tuple of
convex bodies ∆1,∆2, . . . ,∆n in Ln the following inequality
holds:

V 2
n (∆1,∆2,∆3, . . . ,∆n) ≤
Vn(∆1,∆1,∆3, . . . ,∆n)Vn(∆1,∆1,∆3, . . . ,∆n).

(2)

The Alexandrov–Fenchel inequality is one of the most general in-
equalities between mixed volumes of convex bodies. It has many
corollaries. Below are two examples.
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COROLLARIES
Corollary 1. For any 2 ≤ m ≤ n and for any n-tuple of
convex bodies ∆1, . . . ,∆n, we have:∏

1≤i≤m

Vn(∆i, . . . ,∆i,∆m+1, . . . ,∆n) ≤ Vn(∆1, . . . ,∆n)
m.

(3)
For m = 2, inequality (3) coincides with the inequality (2).
Corollary 2. For any 2 ≤ m ≤ n and for any collection of
convex bodies ∆1,∆2, ∆m+1, . . . ,∆n we have:

V
1
m
n (∆1, . . . ,∆1,∆m+1, . . . ,∆n)+

V
1
m
n (∆2, . . . ,∆2,∆m+1, . . . ,∆n) ≤

V
1
m
n (∆1 +∆2, . . . ,∆1 +∆2,∆m+1, . . . ,∆n).

(4)

For m = 2, inequality (4) coincides with the inequality (3).
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INEQUALITIES IN DIMENSION TWO

Let Q : S → R be a homogeneous polynomial of degree two, let
B : S2 → R be its polarization.

Then for a pair of points x, y ∈ S the polynomial Q satisfies:

1. the Brunn–Minkowski type inequality if Q(x) ≥ 0, Q(y) ≥ 0,
Q(x + y) ≥ 0 and

Q
1
2(x) +Q

1
2(y) ≤ Q

1
2(x + y); (5)

2. the Alexandrov–Fenchel type inequality if Q(x) ≥ 0, Q(y) ≥
0, B(x, y) ≥ 0 and

Q(x)Q(y) ≤ B2(x, y). (6)
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EQUIVALENCE OF THE TWO INEQUALITIES

The following theorem is easy to prove:

Theorem. A homogeneous polynomial Q : S → R of degree
2 satisfies the Brunn–Minkowski type inequality for x, y if and
only if it satisfies the Alexandrov–Fenchel type inequality for
x, y.

Proof. Assume that Q satisfies the Brunn–Minkowski type in-
equality for x, y ∈ S, squaring both sides of (5 ), we obtain

Q(x) + 2Q(x)
1
2Q(y)

1
2 + Q(y) ≤ Q(x) + 2B(x, y) + Q(y),

or Q(x)
1
2Q(y)

1
2 ≤ B(x, y).

Thus, B(x, y) is nonnegative. By squaring both sides of the pre-
vious inequality, we obtain Q(x)Q(y) ≤ B2(x, y).
Theorem is proven in one direction. Its proof in the opposite
direction is similar.
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ISOPERIMETRIC INEQUALITY

Our proofs of inequalities in algebra and geometry are based on
the Brunn–Minkowski inequality for n = 2. To prove it, one either
can refer to the Brunn–Minkowski inequality for any n (which is
not hard to prove) or to the Alexandrov–Fenchel inequality for
n = 2, which is as easy to prove as the isoperimetric inequality.

Corollary 1.The area V (∆) of a convex body ∆ ⊂ R2 and the
length l(∂∆) of its boundary satisfy the following inequality:

V (∆) ≤ 1

4π
l(∂∆)2.

Moreover, if ∆ is a ball, then the inequality becomes equality.

Proof. Corollary follows from Example and from inequality (2) for
n = 2; ∆1 = ∆; ∆2 = B1, where B1 is the unit ball.
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BRUNN–MINKOWSKI TYPE INEQUALITY

Theorem. Let X be an irreducible n-dimensional variety,
L1, L2 be elements in K(X) and let L3 be their product, i.e.,
L3 = L1L2. Then the following inequality holds:

[L1, . . . , L1]
1
n + [L2, . . . , L2]

1
n ≤ [L3, . . . , L3]

1
n.

Proof. Let ∆(L1), ∆(L2), ∆(L3) be the NO bodies L1, L2, L3.

By Main Theorem, we have the following inclusion:

∆(L1) + ∆(L2) ⊂ ∆(L3).

By the Brunn–Minkovsky inequality, we have:

V
1
n(∆(L1)) + V

1
n(∆(L2)) ≤ V

1
n(∆(L3)).

By Main Theorem for i = 1, 2, 3, we have:

[Li, . . . Li] = n!V (∆(Li)).

These relations imply the theorem.
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HODGE TYPE INEQUALITY

Theorem. Let X be an irreducible algebraic surface, L1, L2 be
elements in K(X) and let L3 be their product, i.e., L3 = L1L2.
Then the following inequality holds:

[L1, L1][L2, L2] ≤ [L1, L2]
2.

Proof. By Brunn–Minkowski type inequality, we have

[L1, L1]
1
2 + [L2, L2]

1
2 ≤ [L1L2]

1
2.

As we proved, this inequality is quadrivalent to the inequality:

[L1, L1][L2, L2] ≤ [L1, L2]
2.

Note that for reducible surfaces the Hodge type inequality in gen-
eral does not hold.
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KODAIRA MAP

A point x ∈ X which is regular for functions f from L ∈ K(X)
defines a linear function lx on L whose value at f ∈ L is f (x).
One defines a rational map l : X → L∗ where l(x) = lx. The
Kodaira map ΦL : X → P(L∗) is the projectivization of l.

L ∈ K(X) is a big space if the Kodaira map provides a birational
isomorphism between X and the closure Y ⊂ P(l∗) of ΦL(X).

Lemma. Assume that X is an irreducible variety with dimCX >
1 and L ∈ K(X) is a big space. Then a generic hyperplane
section of the projective variety Y ⊂ P(L∗), Y = ΦL(X) is an
irreducible variety.

Proof. Lemma is a version of the classical Bertini–Lefschetz the-
orem.
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ALEXANDROV–FENCHEL TYPE INEQUALITY

Theorem. Let X be an irreducible n-dimensional variety,
and let L1, . . . , Ln be elements in K(X). Then we have:

[L1, L2, L3, . . . , Ln]
2 ≥ [L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

Proof. Assume first that L3, . . . , Ln are very big. spaces. Let U
be an admissible set for L1, . . . , Ln and let f = (f3, . . . , fn) be a
generic vector function such that f3 ∈ L3, . . . , fn ∈ Ln. Then the
variety Xf defined in U by f3 = · · · = fn = 0 is a smooth surface.

Since the spaces L3, . . . , Ln are very big by the Bertini–Lefschetz
theorem the surface Xf is irreducible.

Theorem follows from the Hodge type inequality for the restriction
of spaces L1, L2 to the irreducible surface Xf .
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CONTINUATION

In the proof of the Alexandrov–Fenchel type inequality one can
drop the assumption that the spaces L3, . . . , Ln are very big.

Indeed, let L1, . . . , Ln ∈ K(X) be arbitrary elements. Then for
any very big space L ∈ K(X) and for any natural number q,

L
q
1L, . . . , L

q
nL

are very big spaces Thus for them the Alexandrov–Fenchel type
inequalities hold.

The intersection index [L
q
1L, . . . , L

q
nL] is a polynomial in q with

the leading term
qn[L1, . . . , Ln].

This argument proves that the Alexandrov–Fenchel type inequal-
ities for n-tuples of spaces L

q
1L, . . . , L

q
nL imply the Alexandrov–

Fenchel type inequality for the n-tuple L1, . . . , Ln.
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RELATED INEQUALITIES

Let X be an irreducible n-dimensional variety.

Corollary 1. For any 2 ≤ m ≤ n and for any n-tuple of
spaces L1, . . . , Ln ∈ K(X) we have:∏

1≤i≤m

[Li, . . . , Li, Lm+1, . . . , Ln] ≤ [L1, . . . , ln]
m.

For m = 2, Corollary 1 gives the Alexandrov–Fenchel type in-
equality. For m = n it is symmetric in its arguments.
Corollary 2. For any 2 ≤ m ≤ n and for any collection of
paces L1, L2, Lm+1, . . . , Ln ∈ K(X) we have:

[L1, . . . , L1, Lm+1, . . . , Ln]
1
m + [L2, . . . , L2, Lm+1, . . . , Ln]

1
m

≤ [L1L2, . . . , L1L2, Lm+1, . . . , Ln]
1
m.

For m = 2, Corollary 2 gives the Brunn–Minkowski type inequal-
ity.
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ALGEBRAIC RESULTS IMPLYGEOMETRIC ONES

The Alexandrov–Fenchel inequality for integral convex polyhedra
follows from the Alexandrov–Fenchel type inequality in algebra via
the BKK theorem. It implies such inequality for rational polyhe-
dra by homogeneity. Any convex body can be approximated by
rational polyhedra. It proves the Alexandrov–Fenchel inequality
for any n-tuple of convex bodies.

INTERSECTION INDEX OF DIVISORS

The above inequalities hold for the intersection index of nef Cartier
divisors on irreducible projective varieties . They also hold for the
birationally invariant intersection index of nef type Shokurov (b)-
divisors on irreducible algebraic varieties.
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A detailed presentation of the theory of Newton–Okounkov
bodies can be found in:

[1] Kaveh, K. and Khovanskii, A.Newton–Okounkov bodies, semi-
groups of integral points, graded algebras and intersection the-
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For an overview of the geometric type inequalities in
algebraic geometry see:

[2] Khovanskii, A. Semigroups, Cartier divisors and convex bod-
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