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Abstract. —

Résumé (La théorie limite du Frobenius, Bôıte 7: Cöanalyse)

1. Scattered

Definition 1.1. — Let K be a valued field. A subset X ⊂ K is said to be scattered
if {|x − y| : x, y ∈ K} is finite. X ⊂ Kn is scattered if the projection πi(X) ⊂ K is
scattered for each i.

Remark 1.2. — In point-set topology, a subset X of a Hausdorff topological space
is scattered if every subset of X has at least one isolated point, or equivalently, no
subset of X is dense-in-itself. If a set X ⊂ Kn is scattered in the above sense, then it
is topologically discrete, thus certainly scattered in the topological sense. The above
definition seems to be a much stronger condition than being topologically scattered,
so the terminology might have a different origin.

Lemma 1.3. — Assume that X is scattered. Then there are a finite number of
equivalence relations E0 ⊂ E1 ⊂ . . . ⊂ En on X so that E0 = Id, En has a single
equivalence class, and for each Ei+1 class Y , there is a map fYi embedding Y/Ei into
the residue field. Ei and fYi are quantifier free definable in the language of valued
fields and fYi is defined by a formula with a parameter which depends upon Y . Each
of the Ei are defined over any set of parameters over which X is defined.

Proof. — Let X ⊂ Kd. We proceed by induction on d. First consider the base case
where X ⊆ K1. Let ρ0 < ρ1 < . . . ρn be the possible values of |x − y| for x, y ∈ X.
Let Ei(x, y) hold if |x−y| ≤ ρi. Then E0 ⊂ E1 ⊂ · · · ⊂ En has the desired properties.
Given an Ei-equivalence class Y , we let fYi−1(x) = res(c−1

i (x − b)), where b is any
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element of Y and ci any element of K with absolute value ρi. Then fYi induces an
injection from Y/Ei−1 into the residue field.

Now suppose X ⊂ Kd+1. The projection of X to the first d coordinates will
still be scattered. Applying the inductive hypothesis to this projection, we get a
decomposition E′0 ⊂ E′1 ⊂ · · · ⊂ E′n. Applying the base case to πd+1(X), we also get
a sequence of equivalence relations F ′0 ⊂ F ′1 ⊂ · · · ⊂ F ′n on πd+1(X). For i ≤ n, let
Ei(x, y) assert that the first d coordinates of and x and y satisfy E′i while xd+1 = yd+1.
For i ≥ n, let Ei assert that F ′i−n(xd+1, yd+1). We leave the construction of the fYi
as an exercise to the reader.

Lemma 1.4. — Let K be a transformal valued field with ΓK a torsion-free Z[σ]-
module. If L is an elementary extension of K and 0 6= a ∈ L is transformally
algebraic over K (i.e., K(a)σ has finite transcendence degree over K), then v(a) is
in Q(σ)ΓK .

Proof. — Since a has finite total dimension over K, it is a root of some nonzero
transformal polynomial F (x) =

∑
ν cνx

ν , with cν ∈ K. Because
∑
ν cνa

ν = 0, there
must exist µ 6= ν such that v(cνa

ν) = v(cµa
µ) 6=∞. Then (ν−µ)v(a) = v(cν)−v(cµ),

so

v(a) =
v(cν)− v(cµ)

ν − µ
∈ Q(σ)ΓK .

Proposition 1.5. — Let K be a transformal valued field with ΓK a torsion-free Z[σ]-
module. Then any definable set X ⊂ Kn of finite total dimension is scattered.

Proof. — It suffices to show that for 1 ≤ i ≤ n, the definable set

Si = {|xi − yi| : x, y ∈ X(L)}
is bounded in elementary extensions L of K, because this will imply that it is finite
for L = K, which is the definition of scattered. By the assumption that X has finite
total dimension, the xi, yi, and xi − yi are transformally algebraic over K. By the
previous lemma, every element of Si is in {∞} ∪Q(σ)ΓK , which is bounded.

Let us give a simple example. When X ⊂ A1 is given by σx− x = 0, then for any
solution v(a) = 0. Any difference of solutions is a solution, so val(a − b) = 0 when
a, b are two distinct solutions. Consequently, res(a) 6= res(b). Therefore the residue
map gives an injective map from X into A1. In the proposition, we can take E0 ⊂ E1,
with E0 equality and E1 = X ×X.

2. Co-Analysis

Given a structure M and a distinguished sort or definable set V , there is a tradi-
tional notion of what it means for a definable set D to be co-analyzable over V . D
is co-analyzable over V in zero steps if it is a singleton. D is co-analyzable in n + 1
steps if there is a definable map f : D → V m for some m, such that the fibers of f
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are co-analyzable over V in n steps. The parameters used to define f can come from
anywhere. This notion is a slight variant of the notion of analyzability, in which one
instead requires the fibers of the map to be internal and the base to be analyzable.

In Section 7.2, Hrushovski defines a notion of “co-analyzability” which differs from
the traditional version in a few ways. First, he restricts to quantifier free sets. Sec-
ond, he considers definable families of sets. Roughly speaking, a predicate P (x; y)
is going to be co-analyzable in the sense if Hrushovski if P (L; b) is co-analyzable in
the traditional sense for every model L and tuple b from L. Finally, he introduces an
extra piece of data into the definition, a notion of “inertial dimension,” which keeps
track of the degrees of freedom from the residue sort that were used in the co-analysis
of a set.

Let M be F (t)aσ for some trivially valued inversive difference field F , with the usual
ω-increasing valuation on M such that v(t) > 1. Let L be the language of transformal
valued rings over M with a distinguished sort V = Vres for the residue field.Let T be
the theory of ω-increasing transformal valued fields extending M . We emphasize in
what follows that u and v will always denote variables from the residue field sort, or
for more general discussion, from the sort V . Variables x, y, z will come from either
the home sort (the valued field) or V (the residue sort).

Elements of M are named by constants. In what follows, we will never extend the
language by adding constants for elements outside of M .

Let Φ(x; y) be the set of quantifier-free L-formulas such that if φ(x; y) ∈ Φ then
T |= φ(x; v) → φ1(x) ∧ φ2(v) for some quantifier-free ACFA formulas φ1 and φ2

of finite total dimension over M (or Mres). Equivalently, a quantifier-free L-formula
φ(x; y) is in Φ(x; y) when it implies that its arguments are transformally algebraic over
M or Mres, in the sense that for any L |= T and a, b from L such that L |= φ(a, b),
we have a and b transformally algebraic over M or Mres.

By Φfn, we denote a set of basic functions; in the setting of transformal valued
fields, this will be the set of functions built out of composition from σ-polynomials
(on both the residue field sort and the field sort, with coefficients from Mres or M ,
respectively) and maps of the form:

(x, y1, y2) 7→ res

(
x− y1

y1 − y2

)
,

where y1 6= y2 and v(x− y1) = v(x− y2).
Note that elements of Φfn and Φ(x; y) can name parameters from M , but are not

allowed to name parameters from bigger models.
We will write dV (φ(v; y)) ≤ n if for any L |= T and a, b from L, φ(a; b) implies

t.dim(a/(M(b))res) ≤ n. In other words, φ(·; b) defines a difference scheme over
M(b)(res) with total dimension at most n, for any b in an extension of M . By definition
of Φ(v; y), if φ(v; y) ∈ Φ(v; y), then dv(φ(v; y)) <∞. The quantity dV (φ) is a measure
of the size of the fibers of the relation cut out by φ.

We are about to define what it means for φ(x; y) in Φ(x; y) to be “co-analyzable”
of inertial dimension at most n. This should be thought of as a generalization of dV
to the case where the first argument no longer lives in the residue sort. Specifically,
the inertial dimension of φ(x; y) is a bound on the dimension of the fibers φ(L; b) in
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models L |= T , in some sense of the word “dimension.” The inertial dimension of
φ(x; y) tells us nothing about how much y can vary.

Definition 2.1. — We define the notion of (h, n)-co-analyzability for P ∈ Φ by
induction, and will sometimes alternatively write co-analyzable in h steps of inertial
dimension at most n.

1. P (x; y) is co-analyzable in 0 steps of inertial dimension less than or equal to n
if for every N |= T and b ∈ N , |P (N ; b)| ≤ 1.

2. P (x; y) is co-analyzable in 3h+ 1 steps of inertial dimension less than or equal
to n if there are

– n1, n2 ∈ N such that n1 + n2 ≤ n
– Q(x; y, v) ∈ Φ(x; y, v) which is co-analyzable in at most 3h steps of inertial

dimension less than or equal to n1

– R(v; y) ∈ Φ(v; y) with dV (R(v; y)) ≤ n2

– g(x; y) = v, a basic definable function (from Φfn)
such that for all N |= T and b ∈ N,

P (N ; b) ⊆ {a ∈ N |N |= Q(a; b, g(a, b)) ∧R(g(a, b); b)}.
Note that the function g is a map to V m for some m.

3. P (x; y) is co-analysable in 3h+ 2 steps of inertial dimension less than n if there
are Q1(z, y), . . . , Ql(z, y) ∈ Φ(z, y) such that for j = 1, . . . , l,

φj(x; z, y) := P (x, y) ∧Qj(y, z) ∈ Φ(x; z, y)

is co-analysable in at most 3h + 1 steps of inertial dimension less than n and
such that

T ` P (x, y)→
l∨
i=1

∃z : Qi(z; y),

i.e., for all models N |= T and b ∈ N, if P (N, b) 6= ∅, then there is c ∈ N and
some j such that Qj(c; b).

4. P (x; y) is co-analyzable in 3h+ 3 steps of inertial dimension less than or equal
to n if there are Pi(x; y) ∈ Φ(x; y) for 1 ≤ i ≤ l which are co-analyzable in
at most 3h + 2 steps of inertial dimension less than or equal to n such that

T ` P (x; y)→
∨l
i=1 Pi(x; y).

We say that P (x; y) is co-analyzable with inertial dimension ≤ n if it is (h, n)-
coanalyzable for some h.

The number of steps in a co-analysis has no significance and is merely a bookkeeping
device for managing inductive proofs.

Remark 2.2. — Note that if T ` P (x; y) → Q(x; y), and Q(x; y) has inertial di-
mension at most n, then so does P (x; y). This can be seen by using step 3h+ 1. For
large enough h, Q(x; y) will be (3h, n)-co-analyzable. Taking R(; y) to be a finite-total
dimension formula implied by Q(x; y) and letting g(x, y) be the unique function with
range V 0, we have

T ` P (x; y) =⇒ Q(x; y, g(x, y)) ∧R(g(x, y); y),
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so that P (x; y) is (3h+ 1, n)-co-analyzable.

Remark 2.3. — By virtue of step 3h + 3, the union of two predicates of inertial
dimension n has inertial dimension n.

Remark 2.4. — There are a couple differences between our definition and Hrushovski’s
original definition of co-analyzability. First, we have allowed the second parameter
of a co-analyzable formula P (x; y) to range over things other than V . This seemed
in the spirit of the name “co-analyzable.” Moreover, without making this change, all
co-analyzable sets (fibers of co-analyzable relations) would be internal to the residue
sort, which was probably not the desired intent.

We have also added a third step to allow for finite unions of co-analyzable sets.
Explicitly, we have forced it to be true that the union of two sets of inertial dimension
at most n has inertial dimension at most n. This property is used by Hrushovski in
the subsequent proofs, and didn’t seem to be implied by the original definition.

In the most general setting, step 3h + 3 cannot be obtained from the other two
steps. Suppose we omit step 3h + 3, and only use Hrushovski’s original two steps.
Suppose Φfn only contains constant functions. One can easily verify that in this
setting, only singletons are co-analyzable. Specifically, if P (x; y) is co-analyzable,
then in any model N |= T , |P (N ; b)| ≤ 1 for b ∈ N . On the other hand, the union of
two such relations will probably not have this property, showing that a union of two
co-analyzable relations need not be co-analyzable. To avoid this problem, we have
added in step 3h+ 3 explicitly.

Definition 2.5. — Let L be a model of T and let D be a quantifier-free definable
set in L. We say that D is co-analyzable of inertial dimension at most n if there is
some predicate P (x; y) co-analyzable in some number of steps of inertial dimension
at most n and some b in L such that D is P (L; b).

Definition 2.6. — Let L be a model of T and let K be a substructure of L, such
that the home sort and residue sort of K are both fields, but the residue map need not
be surjective. Let a ∈ L. Then we define dimV (a/K) ≤ n if there is some predicate
P (x; y) co-analyzable with inertial dimension at most n and some b ∈ K such that
L |= P (a; b).

Remark 2.7. — This doesn’t depend on the choice of the ambient model L, i.e., it
would not change if we replaced L by a larger model. This follows from our choice
to include only quantifier-free formulae in Φ(x; y). Is this the only place we used the
quantifier-free assumption?

Definition 2.8. — Let X and Y be ∅-definable sets. Then X is internal to Y if
there is a definable surjective map f : Y m → X for some m. Sometimes we ask for
an injective map X → Y m rather than a surjective map Y m → X. This is slightly
stricter in general, but equivalent when Y eliminates imaginaries. The definition of
co-analyzability seems to be following this stricter definition, with g playing the role
of the injective map.
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Part of the point of the previous definition of internality is that even though X
and Y are B-definable (adding constants, we may assume B = ∅), any map f which
“witnesses internality” might require additional parameters.

Remark 2.9. — Let us analyze the definition of co-analyzability in several sim-
ple instances. First, assume that P (x; y) is (1, n)-co-analyzable. By hypothesis,
P (x; y) ⇒ Q(x; y, g(x, y)), where Q(x; y, u) is (0, n)-co-analyzable. The (0, n)-co-
analyzability of Q(x; y, u) means that x is uniquely determined by y and u. Con-
sequently, g(x, b) must be an injective map from each fiber P (x; b) into the residue
sort. Further, we track the dimension of the fibers via R. In the case of (1, n)-co-
analyzability, n1 as in the definition is 0, so n = n2, the dimension of g(x, y) over y.
So, we can see that the image of g(x, b) as x varies in the fiber above b is bounded
by the inertial dimension n. Thus, (1, n)-co-analyzability corresponds to uniform in-
ternality to V with the injective map on the fiber above b requiring no parameters
except for b.

Now suppose that P (x; y) is (2, n)-co-analyzable. Then by definition, there are
finitely many Qj ∈ Φ(z; y) so that for each j, P (x; y) ∧ Qj(z; y) ∈ Φ(x; yz) is (1, n)-
co-analyzable. The z’s here serve as the extra parameters needed to define the maps
witnessing internality, making (2, n)-co-analyzability the same thing as internality (of
the fibers). There is no requirement on Qj besides that it is finite total dimension.
So, in the notion of co-analysis, the inertial dimension is essentially measuring the
sum of the dimensions of the fibrations we are taking; we don’t care about the addi-
tional parameters, except to say that we can find them in some finite total dimension
difference varieties.

Using the analysis in Section 1, one can show that scattered sets are co-analyzable.
So all sets of finite total dimension are co-analyzable.

Example 2.10. — Consider the system of difference equations given by

xσ − x = t

tyσ = xy

Let P3(x, y;−) ∈ Φ(x, y;−) be the formula asserting x and y satisfy the above differ-
ence equations. One can show that P3 is (4, 2)-co-analyzable.

Let K be a model of T (i.e., an extension of M) and let c be an element from some
model of T extending K. Let Rk(c/K) be a N∪{∞}-valued function depending only
on the quantifier-free Φ-type of c over K. Specifically, in the case of ω-increasing
transformal valued fields, let Rk(c/K) be rkval(K(c)/K). In general, we will assume
that Rk(c/K) depends only on K(c), so that Rk(c1/K) = Rk(c2/K) whenever c1
and c2 generate the same Φfn substructure over K. We will write K(c) for the Φfn-
structure generated by c overK. We will write Rk(L/K) for Rk(c/K) if L = K(c). By
assumption, this is well-defined. In the case we care about, Rk(L/K) is rkval(L/K).

We remind the reader of our conventions regarding the residue sort: variables v
and u always come from the residue sort. For the remainder of this section, we will
assume that Rk has the next three properties; from these, we will prove that rank is
a bound for inertial dimension.
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The first is an initial bound on the dimension of tuples in the V -sort of an extension
of Φfn-structures of bounded rank:

IB : If Rk(L/K) ≤ n and a ∈ V (L), then for some φ(v; y) ∈ Φ(v; y) with dV (φ) ≤
n and b ∈ K, L |= φ(a, b).

Remark 2.11. — In the case of differential fields, take Rk(L/K) ot be the supre-
mum of the transcendence degree of tuples ā ∈ C(L) over C(K). Of course, this
property holds almost by definition.

Remark 2.12. — In the case of transformal valued fields, this is saying that if
rkval(L/K) ≤ n, then every element of res(L) has transcendence degree at most
n over res(K), which is clear from the definition.

FD : If K ≤ K ′ ≤ L, then Rk(L/K ′) +Rk(K ′/K) = Rk(L/K).

Remark 2.13. — In the differential case, this again holds essentially by definition.

Remark 2.14. — In the case of transformal valued fields, this is clear.

M : If K ≤ K ′ ≤ N |= T and c ∈ N , then Rk(K ′(c)/K ′) ≤ Rk(K(c)/K).

The three properties given here are sufficient to ensure that any such abstract rank
function Rk which possesses them will serve as an upper bound for inertial dimension.

Remark 2.15. — In the differential case, this again holds essentially by definition.
This might not be a particularly interesting case to consider if all of the properties
follow so easily, but we will see.

In the case of transformal valued fields, this follows from the very technical result
Proposition 6.35 of section 6.6. . . except only in the setting where all the fields have
transformal dimension 0 over the base field M . This won’t actually hold, meaning
that we may need to make a slight adjustment to the setup. In particular, it may
make more sense to work in the theory having a sort for each set defined over M of
finite total dimension. This would be similar to the technique of studying compact
complex manifolds model-theoretically by having one sort for each compact complex
manifold.

As an extra complication, strictly speaking we can’t apply Proposition 6.35 to
get M because the K and L appearing in the above three axioms are not actually
transformal valued fields (models of T ), but instead models of T∀. We can more or
less pretend (1) that T∀ implies the two sorts are both fields, but T∀ is missing the
requirement that the residue map be surjective. We are currently looking into ways
around this problem.

Remark 2.16. — From these three properties IB, FD, and M, we will draw con-
clusions about dimV and Rk. Logically speaking, this happens on an abstract level,
for any rank satisfying the properties of Rk.

1. This would hold if we had added the symbol ÷ to the language.
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Lemma 2.17. — Let K ≤ L |= T∀. Assume Rk(L/K) ≤ n. Let a ∈ L so that a/K
is co-analyzable. (2) Then dimV (a/K) ≤ n.

Proof. — The assumption that a/K is co-analyzable means that dimV (a/K) < ∞,
so that there is some co-analyzable predicate P (x; y) ∈ Φ(x; y) and some b ∈ K such
that L |= P (a; b). The proof proceeds via induction on the number of steps in the
co-analysis of P (x; y).

Suppose that P (x; y) is co-analyzable in 0 steps. Then P (x; y) has inertial dimen-
sion zero, so dimV (a/K) is zero, hence certainly less than whatever n. So there is
nothing to show in this case.

Suppose that P (x; y) is co-analyzable in 3h+1 steps. Then there is some Q(x; y, v)
which is co-analyzable in 3h steps with g ∈ Φfn(x, y; v) and d = g(a, b) so that
L |= Q(a; b, d). Now we are going to apply the induction hypothesis to a/K(d); note
that d is in the V -sort. Forget about Q; we only used it to find d.

By induction, we know that there is some Q1 ∈ Φ(x; y1, v) and b1 ∈ K so thatM |=
Q1(a; b1, d), with dimV (Q1) ≤ Rk(L/K(d)). Now, by IB, there is some R1(v; y2) ∈
Φ(v; y2) so that dV (R1) ≤ Rk(K(d)/K) and some b2 ∈ K with R1(d, b2).

Now, consider P1(x; y, y1, y2) := Q1(x; y1, g(x, y)) ∧ R1(g(x, y); y2). Note that we
know L |= P (a; b, b1, b2) and this formula shows that

dimV (a/K) ≤ dimV (Q1) + dV (R1) ≤ Rk(L/K(d)) +Rk(K(d)/K).

By FD, the right ride of the inequality is Rk(L/K).
Now, consider the case that P (x; y) is co-analyzable in 3h+ 2 steps. In this case,

we know L |= P (a, b) with b ∈ K and T |= P (x; y) ⇒
∨m
j=1 ∃zQj(z; y) and for each

j, P (x; y) ∧Qj(z; y) ∈ Φ(x; z, y) is co-analyzable in 3h+ 1 steps. Set r := Rk(L/K)
and let

Φr := {φ ∈ Φ(x; y, y′, z) | dimV (φ) ≤ r}.
We remind the reader that b ∈ K was fixed above. Let

Φ′r = {¬φ(x; b, b′, z) |φ ∈ Φr, b
′ ∈ K}.

Claim. — We will show that for any j = 1, . . . ,m,

T∀ ∪ tpΦ(a/K) ∪ Φ′r ∪ {Qj(z, b)}

is inconsistent.

Proof. — Suppose not. Then there is some N |= T∀ with K ≤ N such that there are

a1 ∈ N with a1 |= tpΦ(a/K)(1)

d ∈ N with N |= Qj(d, b)(2)

for any φ ∈ Φr, N |= ¬φ(a, b, b′, d).(3)

Let K ′ := K(d) be the Φfn substructure generated by d over K; similarly, set
L′ := K(a′, d) = K ′(a′). By [M], Rk(L′/K ′) ≤ r. By the fact that P (x; y) ∧Qj(z; y)

2. This means that there is some predicate P (x; y) which is co-analyzable, and some b ∈ K such
that L |= P (a, b).
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is co-analyzable in 3h + 1 steps, a′/K ′ is co-analyzable in 3h + 1 steps. So, ap-
plying the induction hypothesis, dimV (a′/K ′) ≤ Rk(L′/K ′) ≤ r. So, there is some
φ(x; b, b′, d) ∈ tpΦ(a′/K ′) with dimV (φ) ≤ r. Now, we can see that N |= φ(a′, b, b′, d).
This contradicts (3).

Now we know that for each j ∈ {1, . . . ,m},

T∀ ∪ tpΦ(a/K) ∪ Φ′r ∪ {Qj(z, b)}

is inconsistent.
By compactness, there is some P ′j(x; b, b′) ∈ tpΦ(a/K) and some finite disjunction∨
j′ φjj′(x; y, y′, z) of elements of Φr such that

T∀ ` P ′j(x; y, y′) ∧Qj(z; y)→
∨
j′

φjj′(x; y, y′, z).

A priori, P ′j(x; b, b′) could depend on j, but replacing it with
∧
j P
′
j(x; b, b′), we may

assume that it does not. Replacing it with P ′(x; b, b′) ∩ P (x; b), we may assume that
P ′(x; y, y′)→ P (x; y).

Because the φjj′ have inertial dimension at most r, so does their disjunction∨
j′ φjj′(x; y, y′, z). Consequently, P ′(x; y, y′)∧Qj(z; y), as an element of Φ(x; y, y′, z)

has inertial dimension at most r. Now, since

T ` P ′(x; y, y′)→ P (x; y)→
∨
j

(∃z)Qj(z, y)

it follows that P ′(x; y, y′) is co-analyzable in some 3k+2 steps with inertial dimension
at most r. Since P (a; b, b′) holds, it follows that dimV (a/K) ≤ r as claimed.

Finally, consider the case where P (x; y) is co-analyzable in 3h + 3 steps. Then
P (x; y) implies some finite disjunction

∨
i Pi(x; y). Since P (a; b) holds, Pi(a; b) must

hold for some i. Applying the inductive hypothesis to Pi(x; y), we are done.

Again, we remind the reader that the assumption that Rk(−) satisfies the above
three properties (IB, FD, M) is in effect.

Proposition 2.18. — Let P ∈ Φ(x; y) be co-analyzable. Assume that if K ≤ M |=
T, a ∈M, and b ∈ K with P (a, b). Then dimV (P ) ≤ Rk(K(a)/K).

Proof. — The result follows by compactness and the previous two lemmas. (We again
use the fact that the inertial dimension of a finite union is the maximum of the inertial
dimension of the things being unioned.)

Finally, when we specialize to the case of ω-increasing transformal valued fields:

Proposition 2.19. — LetM be an algebraically closed ω-increasing transformal val-
ued field of transformal dimension one over an inversive difference field. Assume the
value group of M is Qσ. Let φ ∈ Φ(x) be a quantifier-free formula in the language of
transformal valued fields over M. Assume that φ(x) is Vres-analyzable and that for
any ω-increasing transformal valued field extension L = M(c) with φ(c), rkval(L/M).
Then dimV (phi(x)) ≤ n.
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Proof. — Once we note that the three properties (IB, FD, M) are satisfied by
Rk(−), this proposition is a special case of 2.18. So, let K ′ be a finitely generated
extension of K ′′ over K of transformal dimension zero.

Property IB follows since tr.deg.(K ′res/K
′′
res ≤ rkval(K

′/K ′′). Property FD
follows because vector space dimension is additive in extensions. M follows from
6.35.

Proposition 2.20. — Suppose that P (x; y) is (h, n)-co-analyzable with the theory
T , the set of formulas Φ, and the set of basic functions Φfn fixed.

1. For some finite T0 ⊂ T , Φ0 ⊂ Φ, Φfn,0 ⊂ Φfn, P has inertial dimension less
than or equal to n with respect to T0,Φ0,Φfn,0.

2. Let Mq |= Tq, where q ∈ S ⊂ N with S infinite, be a family of models of T0.
Suppose that for any P (v; y) ∈ Φ0 (note that the first variable is in the residue
sort), there is β so that for all q and all b ∈Mq,

|P (Mq, b)| ≤ βqdV (P ).

Then for any Q(x; y) ∈ Φ0 with dimV (Q) ≤ n with respect to T0,Φ0,Φfn,0,
there is some β1 such that for all q and for all b ∈Mq,

|P (Mq, b)| ≤ β1q
n.

Proof. — (1) follows by book keeping during the co-analysis. (2) uses induction on
the number of steps. At 3h+ 2 and 3h+ 3 steps, we may increase β. At 3h+ 1 steps,
the exponent increases, and we use the assumption to count the number of points in
fibers, since they live in the residue sort.

Remark 2.21. — The situation in which we will be interested will be when the
theory T0 is that of k-increasing transformal valued fields (for some large enough k).
Then we will take Mq := Kq(t)

alg with some nontrivial valuation and with the q-
Frobenius. So, the previous proposition takes us from counting points in the residue
sort to counting points in definable sets co-analyzable in the residue sort.
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