Name: _

Student ID: _____

Your submission must consist only of the pages given.

- 1. (4 points) True or False (Fill in the blank with T or F)
 - (a) If A is an $n \times n$ matrix such that there is $b \in \mathbb{R}^n$ for which Ax = b does not have a unique solution, then we can still apply Cramer's rule to get at least one of the solutions.
 - (b) If A is an $n \times n$ matrix, then $Null(A) \cap Col(A) = \{0\}$.
 - (c) Any real $n \times n$ matrix A where n is odd has a nonzero real eigenvector.
 - (d) There is an $n \times n$ real matrix with n 1 distinct real eigenvalues and 1 complex eigenvalue with nonzero imaginary part.
- 2. (4 points) Multiple choice: If A is a 2×2 matrix such that $A^2 = I_2$ where I_2 is the 2×2 identity matrix, which of the following could be the characteristic polynomial of A? Mark an "x" in the box next to the correct answers:
 - 1. (x-1)(x-1)(x+1)2. $x^2 - x$ 3. $x^2 - 2x + 1$ 4. $x^2 - 1$
- 3. (4 points) Multiple choice: Which of the following pairs of matrices are similar? Mark an "x" in the box next to the correct answers:

1.
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
, $\begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$
2. $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$
3. $\begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 0 & -6 \end{pmatrix}$
4. $\begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$, $\begin{pmatrix} 5 & 3 \\ 1 & 1 \end{pmatrix}$

4. (6 points) An $n \times n$ matrix O is called *orthogonal* if $O^T O = I_n$ where I_n is the $n \times n$ identity matrix. Find a 4×4 orthogonal matrix whose first column is

Additional space for problem 4:

- 5. (6 points) Let P_2 be the set of polynomials of degree ≤ 2 . Consider the linear map $T: P_2 \to P_2$ given by T(p)(x) = 2p(x) p'(x)x where p' denotes the derivative of the polynomial p.
 - 1. Show that T is linear (you can assume without proof that $(p_1 + p_2)'(x) = p'_1(x) + p'_2(x)$ where $p_1, p_2 \in P_2$).
 - 2. Find the eigenvectors and eigenvalues of T.

Additional space for problem 5:

6. (6 points) Find the determinant of

where a and b are any real numbers (Hint: Use row operations to cancel many elements and simplify the calculation).

Additional space for problem 6:

7. (2 points) (Bonus) Show that if an orthogonal matrix O has determinant -1, then -1 is an eigenvalue of O.

Additional space for problem 7: