1. (4 points) True or False (Fill in the blank with T or F)
 (a) If A is an $n \times n$ matrix such that there is $b \in \mathbb{R}^n$ for which $Ax = b$ does not have a unique solution, then we can still apply Cramer’s rule to get at least one of the solutions. □
 (b) If A is an $n \times n$ matrix, then $\text{Null}(A) \cap \text{Col}(A) = \{0\}$. □
 (c) Any real $n \times n$ matrix A where n is odd has a nonzero real eigenvector. □
 (d) There is an $n \times n$ real matrix with $n - 1$ distinct real eigenvalues and 1 complex eigenvalue with nonzero imaginary part. □

2. (4 points) Multiple choice: If A is a 2×2 matrix such that $A^2 = I_2$ where I_2 is the 2×2 identity matrix, which of the following could be the characteristic polynomial of A? Mark an “x” in the box next to the correct answers:
 1. $(x - 1)(x - 1)(x + 1)$ □
 2. $x^2 - x$ □
 3. $x^2 - 2x + 1$ □
 4. $x^2 - 1$ □

3. (4 points) Multiple choice: Which of the following pairs of matrices are similar? Mark an “x” in the box next to the correct answers:
 1. $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$ □
 2. $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ □
 3. $\begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 0 & -6 \end{pmatrix}$ □
 4. $\begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$, $\begin{pmatrix} 5 & 3 \\ 1 & 1 \end{pmatrix}$ □
4. (6 points) An \(n \times n \) matrix \(O \) is called \textit{orthogonal} if \(O^T O = I_n \) where \(I_n \) is the \(n \times n \) identity matrix. Find a \(4 \times 4 \) orthogonal matrix whose first column is

\[
\begin{pmatrix}
1 \\
-1 \\
2 \\
1
\end{pmatrix}
\]
Additional space for problem 4:
5. (6 points) Let P_2 be the set of polynomials of degree ≤ 2. Consider the linear map $T : P_2 \rightarrow P_2$ given by $T(p)(x) = 2p(x) - p'(x)x$ where p' denotes the derivative of the polynomial p.

1. Show that T is linear (you can assume without proof that $(p_1 + p_2)'(x) = p_1'(x) + p_2'(x)$ where $p_1, p_2 \in P_2$).

2. Find the eigenvectors and eigenvalues of T.
Additional space for problem 5:
6. (6 points) Find the determinant of

\[
A = \begin{pmatrix}
a & b & b & b & b \\
b & a & b & b & b \\
b & b & a & b & b \\
b & b & b & a & b \\
b & b & b & b & a \\
\end{pmatrix}
\]

where \(a\) and \(b\) are any real numbers (Hint: Use row operations to cancel many elements and simplify the calculation).
Additional space for problem 6:
7. (2 points) (Bonus) Show that if an orthogonal matrix O has determinant -1, then -1 is an eigenvalue of O.
Additional space for problem 7: