
C
Math 250A

PROFESSOR KENNETH A. RIBET

Last Midterm Exam

October 29, 2015

2:10–3:30PM, Somewhere in Cory Hall

Please write your NAME clearly:

Please put away all books, calculators, cell phones and other devices. You may consult a
single two-sided sheet of notes. Please write carefully and clearly in complete sentences.

Problem Your score Possible points

1 8 points

2 9 points

3 7 points

4 6 points

Total: 30 points

If not otherwise specified, A is a ring (with 1).

1a. What do we mean when we say that an A-module is free?

We mean that the module is isomorphic to the free module on some set. If S is a set, the free
A-module on S represents the functor F : (A-modules)→ (sets) that takes an A-module X
to the set of functions from S to the set underlying X. The free module on S, often denoted
A〈S〉 is the additive group of finite A-linear combinations of elements of S, endowed with
the obvious scalar multiplication by elements of A.

b. What do we mean when we say that an A-module is projective?

We mean that it satisfies a set of equivalent conditions, one of which is that the module
is a direct summand of a free module. If P is an A-module, another one of the equivalent
conditions for P to be projective is this: whenever g : Y → Z is a surjection of A-modules,
the induced map HomA(P, Y )→ HomA(P,Z) of abelian groups is surjective.
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c. Prove that free modules are projective.

If P = A〈S〉, the map HomA(P, Y )→ HomA(P,Z) that was just described may be rewritten
Maps(S, Y ) → Maps(S,Z). We see easily that this map is surjective: given a surjection
Y → Z and a map ϕ : S → Z, we can lift this map to a map S → Y by choosing a preimage
in Y for each ϕ(s).

d. Give an example of a projective module that is not free, showing that the module is
indeed projective but not free.

The first example given in class was this one: Let K be a field and let A be the ring K ⊕K.
The module K ⊕ K is a free module of rank 1 (!). Its submodule P = K ⊕ (0) is then a
direct summand of a free module. One would like to say that P is visibly not free because
its dimension over K is 1, which is an odd number. This seems to work. Namely, if S is
a finite set, the free module A〈S〉 has K-dimension equal to twice the number of elements
of S. If S is infinite, the free module A〈S〉 is of infinite dimension over K.

2a. Let F be a covariant functor from a category (which I’ll refer to as the “source category”)
to the category of sets. Precisely what do we mean when we say that F is representable?

The functor F is representable if there is a universal object T in the “source category” and
a universal element u in the set F (T ). These players are required to have the following
property: For each object X in the source category and each element s of the set F (X),
there is a unique morphism h ∈ Mor(T,X) such that s = F (h)(u). The right-hand member
of this equation is the element of F (X) gotten by applying F (h) to u. We can denote it also
by h∗(u).

b. Let F be the functor from (rings) to (sets) that takes a ring to its underlying set. Show
that F is representable.

We take T to be the ring Z[x] and let u be the element x of the set underlying T . If A is
a ring and a is an element of A. there is a unique ring homomorphism h : T → A taking x
to a. We have, in fact, h(f(x)) = f(a).

c. Let F be the functor that takes a ring A to the set of squares in A. Show that F is not
representable.

Suppose that F is representable by a ring T and an element u of F (T ). Then u is a square
in T , so u = t2 for some t ∈ T . Let A be the ring Z[x] and let s be the square x2 in A. There
should then be a unique ring homomorphism h : T → A such that h(u) = s. We shall show
that h cannot be unique. If h(u) = s, then equivalently h(t)2 = h(t2) = x2, which implies
that h(t) = ±x. Let α : A→ A be the unique ring homomorphism that takes x to −x; thus
α(f(x)) = f(−x) for f ∈ A, so that α(−x) = x and α(x) = −x. The homomorphism αh
then takes t to ∓x and takes u to (∓x)2 = x2. Thus αh is a second ring homomorphism
taking u to x2; it is different from h because its value on t is the negative of the value of h
on t.
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3. Suppose that I is a non-zero ideal of a Dedekind ring A and that a is a non-zero element
of I. Prove that there is an element b of I so that I is the ideal (a, b) generated by a and b:

I = { ra+ sb | r, s ∈ A }.

Here is an outline of the proof, which depends on the unique factorization of non-zero ideals
of A as a product of primes (non-zero prime ideals). The task is to fill in the details:

(1) If I = P e1
1 · · ·P et

t , then (a) = P f1
1 · · ·P

ft
t Q

g1
1 · · ·Qgs

s , where fi ≥ ei for i = 1, . . . , t.

Because a is in I, we have (a) ⊆ I. We say that I divides (a); more precisely, we have
(a) = I · (a)I−1, and the second factor is an integral ideal J because (a)I−1 ⊆ II−1 = A.

The ideal J = (a)I−1 decomposes as a product of primes, which we group as usual into prime
powers. Some of the primes might be among the primes Pi that occur in the factorization
of I; the rest of the primes are primes that don’t occur in I’s factorization, and we can call
them Qj. If we write J = P f1−e1

1 · · ·P ft−et
t Qg1

1 · · ·Qgs
s , we get the expression for (a) that was

in the hint.

(2) There is an element b ∈ A such that b is divisible exactly by P ei
i for all i = 1, . . . , t but

not divisible by any of the Qj.

This is a standard application of the Chinese Remainder Theorem. We chose, for each i, an
xi that is in P ei

i but not in P ei+1
i . We choose, for each j, a zj in the ring that is not in Qj.

(For example, we can take zj = 1.) The CRT allows us to choose a b that is xi mod P ei+1
i

for each i and is also congruent to zj mod Qj for each j.

(3) The ring element b is in I and we have (a, b) = I.

To say that b is in I is to say, in other language, that I divides (b). It is obvious that this is
true because (b) is divisible by P ei

i for all i.

To say that (a, b) = I is to say that the gcd of (a) and (b) is I. This is also obvious from
the point of view of prime factorizations; we chose b to make it so! The amazing thing
is that the gcd is really the ideal generated by a and b. We come away with the striking
observation that I is generated by two elements. The first element can be taken to be any
old non-zero member of I, but then the second element then needs to be chosen carefully
using the Chinese Remainder Theorem.

4a. Exhibit two non-zero modules M and N over a commutative ring A with the following
property: if X is an A-module, all bilinear maps M × N → X are zero. Explain carefully
why M and N have this property.

We take A to be Z and take M = Z/mZ and N = Z/nZ, where m and n are relatively prime
integers > 1. For example, we could take m = 2, n = 3. Every bilinear map b : M ×N → X
(where X is an abelian group) will be annihilated (i.e., sent to 0) by multiplication by m, and
also by multiplication by n. Hence it will be sent to zero by multiplication by 1, since 1 is a
Z-linear combination of m and n. Something sent to 0 by multiplication by 1 is definitely 0.
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b. What do we mean when we say that a module is flat?

We mean that tensoring with this module sends injections to injections. If F is an A-module,
we say that F is flat if the map X⊗AF → Y ⊗AF induced by a homomorphism of A-modules
f : X → Y is injective whenever f is injective.

c. Explain why Q is a flat Z-module but not a projective Z-module.

If F is a free Z-module, 0 is the only element of F that is infinitely divisible, i.e., is in n · F
for all n ≥ 1. The Z-module Q is divisible: every rational number can be divided by every
positive integer. Thus Q cannot be embedded in a free Z-module (i.e., free abelian group).
Thus it is certainly not a direct summand of a free abelian group and consequently is not
projective.

On the other hand, Q is flat because it is torsion free. (We discussed in class that torsion
free modules over PIDs are flat.) Alternatively, Q is flat because it’s a localization. Perhaps
it’s best in this situation if I try to explain what’s really going on:

Let M be a Z-module (i.e., an abelian group). The tensor product Q ⊗M (taken over Z)

consists of sums of terms
a

b
⊗m, where a and b are integers (with b non-zero) and m is in M .

We can write
a

b
⊗ m =

1

b
⊗ am by bilinearity. Thus each term α ⊗ m may be rewritten

1

d
⊗m′ whenever d is a denominator for α. A general term of the tensor product is a sum of

terms like this. But we can combine terms by selecting a common denominator for each of

them. Thus Q⊗M is the set of tensors
1

d
⊗m with d ≥ 1 in Z and m ∈M .

Now Q is S−1Z, where S is the multiplicative set of non-zero integers. If M is an abelian

group, I’ll write VM for S−1M , which is the set of quotients
m

d
, modulo the usual relations.

In particular,
m

d
= 0 if and only if m is a torsion element of M (i.e., is killed by some positive

integer).

There is a fairly obvious isomorphism Q⊗M → VM . The bilinear map (α,m) 7→ αm ∈ VM
induces a map from the tensor product to VM . There’s a map in the other direction,

m

d
7→

1

d
⊗m. This second map is a homomorphism (check!) and is an inverse to the first (check!).

Now the flatness is pretty clear. Suppose that we have an inclusion of abelian groups M ⊆ N
and want to check the injectivity of the map on tensor products Q ⊗M → Q ⊗ N . This

amounts to showing that
m

d
is 0 in VM if and only if it is 0 in VN . As I said, however, an

expression like this is 0 if and only if m is torsion. Whether or not m is torsion is the same
question whether we regard m as living in M or in N .
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