

MATH 250A

PROFESSOR KENNETH A. RIBET

Last Midterm Exam

October 29, 2015

2:10–3:30PM, Somewhere in Cory Hall

Please write your NAME clearly:

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences.

If not otherwise specified, A is a ring (with 1).

1a. What do we mean when we say that an A-module is free?

We mean that the module is isomorphic to the free module on some set. If S is a set, the free A-module on S represents the functor $F : (A$ -modules) \rightarrow (sets) that takes an A-module X to the set of functions from S to the set underlying X. The free module on S, often denoted $A\langle S \rangle$ is the additive group of finite A-linear combinations of elements of S, endowed with the obvious scalar multiplication by elements of A.

b. What do we mean when we say that an A-module is *projective*?

We mean that it satisfies a set of equivalent conditions, one of which is that the module is a direct summand of a free module. If P is an A -module, another one of the equivalent conditions for P to be projective is this: whenever $q: Y \to Z$ is a surjection of A-modules, the induced map $\text{Hom}_{A}(P, Y) \to \text{Hom}_{A}(P, Z)$ of abelian groups is surjective.

c. Prove that free modules are projective.

If $P = A\langle S \rangle$, the map $\text{Hom}_{A}(P, Y) \to \text{Hom}_{A}(P, Z)$ that was just described may be rewritten $\text{Maps}(S, Y) \to \text{Maps}(S, Z)$. We see easily that this map is surjective: given a surjection $Y \to Z$ and a map $\varphi : S \to Z$, we can lift this map to a map $S \to Y$ by choosing a preimage in Y for each $\varphi(s)$.

d. Give an example of a projective module that is not free, showing that the module is indeed projective but not free.

The first example given in class was this one: Let K be a field and let A be the ring $K \oplus K$. The module $K \oplus K$ is a free module of rank 1 (!). Its submodule $P = K \oplus (0)$ is then a direct summand of a free module. One would like to say that P is visibly not free because its dimension over K is 1, which is an odd number. This seems to work. Namely, if S is a finite set, the free module $A\langle S \rangle$ has K-dimension equal to twice the number of elements of S. If S is infinite, the free module $A\langle S \rangle$ is of infinite dimension over K.

2a. Let F be a covariant functor from a category (which I'll refer to as the "source category") to the category of sets. Precisely what do we mean when we say that F is representable?

The functor F is representable if there is a universal object T in the "source category" and a universal element u in the set $F(T)$. These players are required to have the following property: For each object X in the source category and each element s of the set $F(X)$, there is a unique morphism $h \in \text{Mor}(T, X)$ such that $s = F(h)(u)$. The right-hand member of this equation is the element of $F(X)$ gotten by applying $F(h)$ to u. We can denote it also by $h_*(u)$.

b. Let F be the functor from (rings) to (sets) that takes a ring to its underlying set. Show that F is representable.

We take T to be the ring $\mathbf{Z}[x]$ and let u be the element x of the set underlying T. If A is a ring and a is an element of A. there is a unique ring homomorphism $h: T \to A$ taking x to a. We have, in fact, $h(f(x)) = f(a)$.

c. Let F be the functor that takes a ring A to the set of squares in A. Show that F is not representable.

Suppose that F is representable by a ring T and an element u of $F(T)$. Then u is a square in T, so $u = t^2$ for some $t \in T$. Let A be the ring $\mathbf{Z}[x]$ and let s be the square x^2 in A. There should then be a unique ring homomorphism $h: T \to A$ such that $h(u) = s$. We shall show that h cannot be unique. If $h(u) = s$, then equivalently $h(t)^2 = h(t^2) = x^2$, which implies that $h(t) = \pm x$. Let $\alpha : A \to A$ be the unique ring homomorphism that takes x to $-x$; thus $\alpha(f(x)) = f(-x)$ for $f \in A$, so that $\alpha(-x) = x$ and $\alpha(x) = -x$. The homomorphism αh then takes t to $\mp x$ and takes u to $(\mp x)^2 = x^2$. Thus αh is a second ring homomorphism taking u to x^2 ; it is different from h because its value on t is the negative of the value of h on t.

3. Suppose that I is a non-zero ideal of a Dedekind ring A and that a is a non-zero element of I. Prove that there is an element b of I so that I is the ideal (a, b) generated by a and b:

$$
I = \{ ra + sb | r, s \in A \}.
$$

Here is an outline of the proof, which depends on the unique factorization of non-zero ideals of A as a product of primes (non-zero prime ideals). The task is to fill in the details:

(1) If
$$
I = P_1^{e_1} \cdots P_t^{e_t}
$$
, then $(a) = P_1^{f_1} \cdots P_t^{f_t} Q_1^{g_1} \cdots Q_s^{g_s}$, where $f_i \ge e_i$ for $i = 1, ..., t$.

Because a is in I, we have $(a) \subseteq I$. We say that I divides (a) ; more precisely, we have $(a) = I \cdot (a)I^{-1}$, and the second factor is an integral ideal J because $(a)I^{-1} \subseteq II^{-1} = A$.

The ideal $J = (a)I^{-1}$ decomposes as a product of primes, which we group as usual into prime powers. Some of the primes might be among the primes P_i that occur in the factorization of I ; the rest of the primes are primes that don't occur in I 's factorization, and we can call them Q_j . If we write $J = P_1^{f_1-e_1} \cdots P_t^{f_t-e_t} Q_1^{g_1} \cdots Q_s^{g_s}$, we get the expression for (a) that was in the hint.

(2) There is an element $b \in A$ such that b is divisible exactly by $P_i^{e_i}$ for all $i = 1, ..., t$ but not divisible by any of the Q_j .

This is a standard application of the Chinese Remainder Theorem. We chose, for each i , an x_i that is in $P_i^{e_i}$ but not in $P_i^{e_i+1}$. We choose, for each j, a z_j in the ring that is not in Q_j . (For example, we can take $z_j = 1$.) The CRT allows us to choose a b that is $x_i \mod P_i^{e_i+1}$ for each i and is also congruent to $z_j \mod Q_j$ for each j.

(3) The ring element b is in I and we have $(a, b) = I$.

To say that b is in I is to say, in other language, that I divides (b) . It is obvious that this is true because (b) is divisible by $P_i^{e_i}$ for all *i*.

To say that $(a, b) = I$ is to say that the gcd of (a) and (b) is I. This is also obvious from the point of view of prime factorizations; we chose b to make it so! The amazing thing is that the gcd is really the ideal generated by a and b. We come away with the striking observation that I is generated by two elements. The first element can be taken to be any old non-zero member of I , but then the second element then needs to be chosen carefully using the Chinese Remainder Theorem.

4a. Exhibit two non-zero modules M and N over a commutative ring A with the following property: if X is an A-module, all bilinear maps $M \times N \to X$ are zero. Explain carefully why M and N have this property.

We take A to be **Z** and take $M = \mathbb{Z}/m\mathbb{Z}$ and $N = \mathbb{Z}/n\mathbb{Z}$, where m and n are relatively prime integers > 1. For example, we could take $m = 2$, $n = 3$. Every bilinear map $b : M \times N \to X$ (where X is an abelian group) will be annihilated (i.e., sent to 0) by multiplication by m , and also by multiplication by n. Hence it will be sent to zero by multiplication by 1, since 1 is a **Z**-linear combination of m and n. Something sent to 0 by multiplication by 1 is definitely 0. **b.** What do we mean when we say that a module is $flat?$

We mean that tensoring with this module sends injections to injections. If F is an A -module, we say that F is flat if the map $X \otimes_A F \to Y \otimes_A F$ induced by a homomorphism of A-modules $f: X \to Y$ is injective whenever f is injective.

c. Explain why Q is a flat Z-module but not a projective Z-module.

If F is a free Z-module, 0 is the only element of F that is infinitely divisible, i.e., is in $n \cdot F$ for all $n \geq 1$. The **Z**-module **Q** is *divisible*: every rational number can be divided by every positive integer. Thus Q cannot be embedded in a free Z-module (i.e., free abelian group). Thus it is certainly not a direct summand of a free abelian group and consequently is not projective.

On the other hand, Q is flat because it is torsion free. (We discussed in class that torsion free modules over PIDs are flat.) Alternatively, Q is flat because it's a localization. Perhaps it's best in this situation if I try to explain what's really going on:

Let M be a Z-module (i.e., an abelian group). The tensor product $\mathbf{Q} \otimes M$ (taken over Z) consists of sums of terms $\frac{a}{b}$ b $\otimes m$, where a and b are integers (with b non-zero) and m is in M. We can write $\frac{a}{b}$ b $\otimes m = \frac{\v{1}}{\v{1}}$ b \otimes am by bilinearity. Thus each term $\alpha \otimes m$ may be rewritten 1 d $\otimes m'$ whenever d is a denominator for α . A general term of the tensor product is a sum of terms like this. But we can combine terms by selecting a common denominator for each of them. Thus $\mathbf{Q} \otimes M$ is the set of tensors $\frac{1}{I}$ d \otimes m with $d \geq 1$ in **Z** and $m \in M$.

Now Q is $S^{-1}\mathbf{Z}$, where S is the multiplicative set of non-zero integers. If M is an abelian group, I'll write V_M for $S^{-1}M$, which is the set of quotients $\frac{m}{J}$ d , modulo the usual relations. In particular, $\frac{m}{l}$ d $= 0$ if and only if m is a torsion element of M (i.e., is killed by some positive integer).

There is a fairly obvious isomorphism $\mathbf{Q} \otimes M \to V_M$. The bilinear map $(\alpha, m) \mapsto \alpha m \in V_M$ induces a map from the tensor product to V_M . There's a map in the other direction, $\frac{m}{d}$ \mapsto 1 d \otimes m. This second map is a homomorphism (check!) and is an inverse to the first (check!).

Now the flatness is pretty clear. Suppose that we have an inclusion of abelian groups $M \subseteq N$ and want to check the injectivity of the map on tensor products $\mathbf{Q} \otimes M \to \mathbf{Q} \otimes N$. This amounts to showing that $\frac{m}{l}$ $\frac{\partial}{\partial t}$ is 0 in V_M if and only if it is 0 in V_N . As I said, however, an expression like this is 0 if and only if m is torsion. Whether or not m is torsion is the same question whether we regard m as living in M or in N .