GALOIS REPRESENTATIONS

ALGEBRAIC NUMBERS:

$\overline{\mathbf{Q}}=\{\alpha \in \mathbf{C}: \alpha$ satisfies a polynomial equation with rational coefficients $\}$

ABSOLUTE GALOIS GROUP OF Q:

$$
\begin{aligned}
G_{\mathbf{Q}} & =\operatorname{Aut}(\overline{\mathbf{Q}}) \\
& =\{\text { bijections } \overline{\mathbf{Q}} \rightarrow \overline{\mathbf{Q}} \text { preserving }+, \times\}
\end{aligned}
$$

with weakest topology for which the stabiliser of every algebraic number is open.

If $f \in \mathrm{Q}[X]$ then let G_{f} denote the Galois group of f, i.e. the group of permutations of the roots of f preserving algebraic relations with Q coefficients.
$f \mid g$ implies $G_{g} \rightarrow G_{f}$.

$$
G_{\mathbf{Q}}=\lim _{\leftarrow f} G_{f},
$$

a profinite group.

The usual (archimedean) absolute value $\left|\left.\right|_{\infty}=| |\right.$ induces a metric on Q. Completing Q with this metric gives the field R of real numbers.

$$
\begin{aligned}
\overline{\mathbf{Q}} & \hookrightarrow \overline{\mathbf{R}}=\mathbf{C} \\
G_{\mathbf{Q}} & \hookleftarrow G_{\mathbf{R}}=A u t^{c t s}(\mathbf{C})=\{1, c\}
\end{aligned}
$$

For a prime p we have the p-adic absolute value on Q :

$$
|\alpha|_{p}=p^{-r} \text { if } \alpha=p^{r} a / b \text { with } p \nmid a b
$$

p -adic numbers $\mathrm{Q}_{p}=$ completion of Q for $\left|\left.\right|_{p}\right.$.

$$
\begin{aligned}
\overline{\mathbf{Q}} & \hookrightarrow \overline{\mathbf{Q}}_{p} \\
G_{\mathbf{Q}} & \hookleftarrow G_{\mathbf{Q}_{p}}=A u t^{c t s}\left(\overline{\mathbf{Q}}_{p}\right)
\end{aligned}
$$

p-adic integers $Z_{p}=$ elements $\alpha \in$ \mathbf{Q}_{p} with $\left|\alpha_{p}\right|_{p} \leq 1$.

$$
\mathbf{Z}_{p} / p \mathbf{Z}_{p}=\mathbf{Z} / p \mathbf{Z}
$$

$$
G_{\mathbf{Q}_{p}} \rightarrow G_{\mathbf{Z} / p \mathbf{Z}}=\left\langle\operatorname{Frob}_{p}\right\rangle
$$

kernel $=I_{p}=$ inertia group at p.

Frob $_{p}=$ (geometric) Frobenius element: $\left(\operatorname{Frob}_{p} \alpha\right)^{p}=\alpha$.

If $f \in \mathbf{Q}[X]$ then for aa p the image of $I_{p} \subset G_{\mathbf{Q}}$ is trivial in G_{f} and so we have a well definied conjugacy class

$$
\left[F r o b_{p}\right] \subset G_{f}
$$

It is characterized by

$$
\left(\operatorname{Frob}_{p} \alpha\right)^{p} \equiv \alpha \bmod p
$$

for α a root of f.
eg $f(X)=X^{4}-2$.
$f(X) \equiv(X-2)(X+2)\left(X^{2}+4\right) \bmod 7$
and so Frob_{7} fixed two roots of f and interchanges two. Thus
$\left[\right.$ Frob $\left._{7}\right]=\{(i \sqrt[4]{2},-i \sqrt[4]{2}),(\sqrt[4]{2},-\sqrt[4]{2})\}$.

1

$$
\begin{aligned}
& (\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}) \\
& (\sqrt[4]{2},-\sqrt[4]{2})(i \sqrt[4]{2},-i \sqrt[4]{2})
\end{aligned}
$$

$$
(\sqrt[4]{2},-i \sqrt[4]{2},-\sqrt[4]{2}, i \sqrt[4]{2})
$$

$$
c=(i \sqrt[4]{2},-i \sqrt[4]{2})
$$

$$
(\sqrt[4]{2},-i \sqrt[4]{2})(-\sqrt[4]{2}, i \sqrt[4]{2})
$$

$$
(\sqrt[4]{2},-\sqrt[4]{2})
$$

$$
(\sqrt[4]{2}, i \sqrt[4]{2})(-\sqrt[4]{2},-i \sqrt[4]{2})
$$

$$
[c]=\left[\text { Frob }_{7}\right]=\{(i \sqrt[4]{2},-i \sqrt[4]{2}),(\sqrt[4]{2},-\sqrt[4]{2})\}
$$

$X^{4}-2 \equiv\left(X^{2}+X-1\right)\left(X^{2}-X-1\right) \bmod$
3.

$$
\begin{aligned}
{\left[\text { Frob }_{3}\right]=} & \{(\sqrt[4]{2},-i \sqrt[4]{2})(-\sqrt[4]{2}, i \sqrt[4]{2}) \\
& (\sqrt[4]{2}, i \sqrt[4]{2})(-\sqrt[4]{2},-i \sqrt[4]{2})\}
\end{aligned}
$$

$X^{4}-2$ irreducible mod5.

$$
\begin{aligned}
{\left[\text { Frob }_{5}\right]=\{ } & (\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}) \\
& (\sqrt[4]{2},-i \sqrt[4]{2},-\sqrt[4]{2}, i \sqrt[4]{2})\}
\end{aligned}
$$

$$
X^{4}-2 \equiv\left(X^{2}-6\right)\left(X^{2}+6\right) \bmod 17
$$

$$
\left[\text { Frob }_{17}\right]=\{(\sqrt[4]{2},-\sqrt[4]{2})(i \sqrt[4]{2},-i \sqrt[4]{2})\}
$$

$$
G_{\mathbf{Q}_{p}} \subset G_{\mathbf{Q}} \supset\{1, c\}
$$

MOTIVATING ALGEBRAIC PROB-

 LEM:Describe $G_{\mathbf{Q}}$ along with $G_{\mathbf{Q}_{p}}, I_{p}$, Frob $_{p}$ etc. inside it.

BETTER QUESTION:

Describe the representations of $G_{\mathbf{Q}}$ while keeping track of restrictions to each $G_{\mathbf{Q}_{p}}$.
e.g. $\varepsilon_{n}: \sigma \mapsto \sigma(\sqrt{n}) / \sqrt{n} \in\{ \pm 1\} \subset \mathbf{Q}^{\times}$.

$$
\operatorname{Frob}_{p} \mapsto 1
$$

iff $X^{2}-n$ has 2 solutions in $\mathbf{Z} / p \mathbf{Z}$.
e.g. GROTHENDIECK (1960's):
X / Q smooth projective variety.

$$
H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)=H^{i}(X(\mathbf{C}), \mathbf{Q}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}}_{l}
$$

has a continuous action of G_{Q}

1) For all but finitely many (aa) p the inertia group I_{p} acts trivially on $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$ (i.e. is 'unramified' at p) so the conjugacy class $\left[F r o b_{p}\right]$ in $\operatorname{Aut}\left(H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)\right)$ is defined.
2) $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$ is a de $\mathbf{R h a m}$ representation of $G_{\mathrm{Q}_{l}}$ (and for aa l it is crystalline).
3) For aa p the characteristic polynomial of $F r o b_{p}$ on $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right.$) (for $l \neq p$) has coefficients in $\overline{\mathrm{Q}}$ and all its roots in C have absolute value $p^{i / 2}$ (i.e. is 'pure' of weight i).

If $V / \overline{\mathrm{Q}}_{l}$ is a finite dimensional vector space and if

$$
r: G_{\mathbf{Q}} \longrightarrow G L(V)
$$

is a continuous representation satisfying these three properties define an L-function $L(V, s)$ as

$$
\left.\Pi_{p \neq l} \operatorname{det}\left(1_{V}-p^{-s} \operatorname{Frob}_{p}\right)\right|_{V^{I} p} ^{-1}
$$

$\times($ similar factor at $l)$
in $\operatorname{Re} s>1+i / 2$.
(We fix once and for all

$$
\left.\mathbf{C} \supset \overline{\mathbf{Q}} \subset \overline{\mathbf{Q}}_{l .} .\right)
$$

Note

$$
L\left(V_{1} \oplus V_{2}, s\right)=L\left(V_{1}, s\right) L\left(V_{2}, s\right) .
$$

e.g. $L($ triv, $s)=\zeta(s)=\Pi_{p}\left(1-1 / p^{s}\right)^{-1}=$ $\sum_{n=1}^{\infty} 1 / n^{s}$.
e.g. if $M_{p}=\#$ of solutions to $X^{2}+$ $n \equiv 0 \bmod p$ then $L\left(\varepsilon_{n}, s\right)$ equals

$$
\prod_{p: M_{p}=2}\left(1-1 / p^{s}\right)^{-1} \prod_{p: M_{p}=0}\left(1+1 / p^{s}\right)^{-1} .
$$

e.g. E / Q an elliptic curve and $N_{p}=$ $\# E(\mathbf{Z} / p \mathbf{Z})$. Then Frob $_{p}$ on

$$
H^{1}\left(E(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right) \cong \overline{\mathbf{Q}}_{l}^{2}
$$

has trace $p-N_{p}$ and determinant p.
Thus
$L\left(\operatorname{Sym}^{n-1} E, s\right)=L\left(\operatorname{Sym}^{n-1} H^{1}\left(E(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right), s\right)$
in $\boldsymbol{\operatorname { R e }} s>(n+1) / 2$.

e.g. If X / Q is smooth projective set

$$
\zeta(X, s)=\prod_{p} \prod_{x \in X \times \mathbf{Z} / p \mathbf{Z}}\left(1-p^{-s \operatorname{deg} x}\right)^{-1}
$$

Then

$$
\zeta(X, s)=\prod_{i} L\left(H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right), s\right)^{(-1)^{i}}
$$

For instance

$\zeta(\operatorname{Spec} \mathrm{Q}, s)=\zeta(s)$
$\zeta(\operatorname{Spec} \mathbf{Q}(\sqrt{n}), s)=\zeta(s) L\left(\varepsilon_{n}, s\right)$
$\zeta(E, s)=\zeta(s) \zeta(s-1) / L\left(\operatorname{Sym}^{1} E, s\right)$

FONTAINE-MAZUR CONJECTURE

 (1988): Suppose that$$
r: G_{\mathbf{Q}} \longrightarrow G L(V)
$$

is a continuous irreducible representation satisfying properties 1. and 2. Then:
a) (Up to Tate twist) V occurs in some $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$.
b) V also satisfies property 3.

1. For aa p the inertia group I_{p} acts trivially on $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$.
2. $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$ is a de Rham representation of $G_{\mathrm{Q}_{l}}$.
3. For aa p the characteristic polynomial of Frobp $_{p}$ on $H^{i}\left(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}\right)$ (for $l \neq p$) has coefficients in \bar{Q} and all its roots in C have absolute value $p^{i / 2}$ (i.e. is 'pure' of weight i).

Topological ring of adeles:

$$
\mathbf{A}=\mathbf{R} \times\left(\mathbf{Q} \otimes \mathbf{Z} \prod_{p} \mathbf{Z}_{p}\right) \quad\left(\subset \mathbf{R} \times \prod_{p} \mathbf{Q}_{p}\right)
$$

$\mathrm{Q} \subset \mathrm{A}$ - discrete and co-compact

$$
\begin{array}{r}
G L_{n}(\mathbf{Q}) \backslash G L_{n}(\mathbf{A}) / \Pi_{p} G L_{n}\left(\mathbf{Z}_{p}\right)= \\
G L_{n}(\mathbf{Z}) \backslash G L_{n}(\mathbf{R})
\end{array}
$$

CLASS FIELD THEORY:

Art $_{p}: \mathbf{Q}_{p}^{\times} \longrightarrow G_{\mathbf{Q}_{p}}^{a b}$ injective, dense image

$$
A r t_{\infty}: \mathbf{R}^{\times} / \mathbf{R}_{>0}^{\times} \xrightarrow{\sim} G_{\mathbf{R}}
$$

$$
\text { Art }=\prod_{x} A r t_{x}: \mathbf{Q}^{\times} \mathbf{R}_{>0}^{\times} \backslash \mathbf{A}^{\times} \xrightarrow{\sim} G_{\mathbf{Q}}^{a b}
$$

Irreducible representations

$$
\pi=\bigotimes_{x}^{\prime} \pi_{x}
$$

are CUSPIDAL AUTOMORPHIC if they occur in

$$
L_{\chi, 0}^{2}\left(G L_{n}(\mathbf{Q}) \backslash G L_{n}(\mathbf{A})\right)
$$

where $(g f)(h)=f(h g)$.

$$
L(\pi, s)=\prod_{p} L\left(\pi_{p}, s\right)
$$

- $\pi_{x}: \pi_{p}$ (resp. π_{∞}) is a representation of $G L_{n}\left(\mathbf{Q}_{p}\right)$ (resp. $G L_{n}(\mathbf{R})$).
- χ : $f(z g)=\chi(z) f(g)$ for $z \in \mathbf{R}_{>0}^{\times}$.
- 0: $\int_{N(\mathrm{Q}) / N(\mathbf{A})} f(n g) d n=0$ for N a subgroup

$$
\left(\begin{array}{cc}
I_{m} & * \\
0 & I_{n-m}
\end{array}\right) \subset G L_{n}
$$

EXAMPLES:

$G L_{1}$: Cuspidal automorphic representations \sim Dirichlet characters

$$
(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}
$$

$G L_{2}$: Regular algebraic cuspidal automorphic forms ~
cuspidal holomorphic modular forms which are newforms.

LANGLANDS RECIPROCITY CON-

 JECTURE: If$$
\rho: G_{\mathbf{Q}} \longrightarrow G L_{n}\left(\bar{Q}_{l}\right)
$$

is a continuous, irreducible representation which is unramified at all but finitely many primes and for which $\left.\rho\right|_{G_{Q_{l}}}$ is de Rham then there is a cuspidal automorphic representation π of $G L_{n}(\mathbf{A})$ with

$$
L(\pi, s)=L(\rho, s) .
$$

In fact this sets up a bijection between such ρ and π with π_{∞} algebraic.

Suppose that

$$
r: G_{\mathbf{Q}} \longrightarrow G L(V)
$$

is a continuous irreducible representation satisfying the reciprocity conjecture then $L(V, s)$ is has analytic continuation to C (except possibly for one simple pole if $\operatorname{dim} V=1$) and satisfies an (explicit) functional equation relating $L(V, s)$ to $L\left(V^{*}, 1-\right.$ $s)$.

If moreover V has weight i then $L(V, s)$ is non-zero in $\operatorname{Re} s \geq i / 2+1$.
(Gelbart-Jacquet)
e.g. Gauss' law of quadratic reciprocity says

$$
L\left(\varepsilon_{n}, s\right)=L(\chi, s)
$$

for some $\chi:(Z / 4 n Z)^{\times} \rightarrow \mathbf{C}^{\times}$.
egg. The Shimura-Taniyama conjecture says that

$$
L\left(\operatorname{Sym}^{1} E, s\right)=L\left(f_{E}, s\right)
$$

where

$f_{E}(z)=\sum_{n=1}^{\infty} a_{n} e^{2 n \pi i z}$,
$L\left(f_{E}, s\right)=\sum_{n=1}^{\infty} a_{n} / n^{s}$,
$f((a z+b) /(c z+d))=(c z+d)^{2} f(z)$
for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbf{Z})$ with $N_{E} \mid c$ (some N_{E}),
$f\left(-1 /\left(N_{E} z\right)\right)=\mp N_{E} z^{2} f(z)$.

Then

$$
\begin{aligned}
& L(E, s) \\
= & (2 \pi)^{s} / \Gamma(s) \int_{0}^{\infty} f_{E}(i y) y^{s-1} d y \\
= & (2 \pi)^{s} 11(1-s) / 2 / \Gamma(s) \\
& \left(N_{E}^{(s-1) / 2} \int_{1 / \sqrt{N_{E}}}^{\infty} f(i y) y^{s-1} d y\right. \\
& \left. \pm N_{E}^{(1-s) / 2} \int_{1 / \sqrt{N_{E}}}^{\infty} f(i y) y^{1-s} d y\right) .
\end{aligned}
$$

Thus $L(E, s)$ extends to an entire function and

$$
\begin{aligned}
& (2 \pi)^{s-2} \Gamma(2-s) L(E, 2-s)= \\
& \pm N_{E}^{s-1}(2 \pi)^{-s} \Gamma(s) L(E, s) .
\end{aligned}
$$

Conjecture (Birch-Swinnerton-Dyer, 1963): There are infinitely many pairs (x, y) of rational numbers satisfying

$$
y^{2}=x^{3}+c x+d
$$

if and only if $L(E, 1)=0$.

Theorem (Gross-Zagier 1986, Kolyvagin 1989): True if order of vanishing ≤ 1.

