GALOIS REPRESENTATIONS

ALGEBRAIC NUMBERS:

 $\overline{\mathbf{Q}} = \{ \alpha \in \mathbf{C} : \alpha \text{ satisfies a polynomial equation with rational coefficients} \}$

ABSOLUTE GALOIS GROUP OF Q:

 $G_{\mathbf{Q}} = Aut(\overline{\mathbf{Q}})$ = {bijections $\overline{\mathbf{Q}} \to \overline{\mathbf{Q}}$ preserving +,×}

with weakest topology for which the stabiliser of every algebraic number is open. If $f \in Q[X]$ then let G_f denote the Galois group of f, i.e. the group of permutations of the roots of fpreserving algebraic relations with Q coefficients.

f|g implies $G_g \twoheadrightarrow G_f$.

$$G_{\mathbf{Q}} = \lim_{\leftarrow f} G_f,$$

a profinite group.

The usual (archimedean) absolute value $| |_{\infty} = | |$ induces a metric on Q. Completing Q with this metric gives the field R of real numbers.

$$\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{R}} = \mathbf{C}$$

$$G_{\mathbf{Q}} \leftrightarrow G_{\mathbf{R}} = Aut^{cts}(\mathbf{C}) = \{1, c\}$$

For a prime p we have the p-adic absolute value on Q:

$$|\alpha|_p = p^{-r}$$
 if $\alpha = p^r a/b$ with $p \not| ab$

p-adic numbers $Q_p = \text{completion of}$ Q for $| |_p$.

$$\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_p \\ G_{\mathbf{Q}} \nleftrightarrow G_{\mathbf{Q}_p} = Aut^{cts}(\overline{\mathbf{Q}}_p)$$

p-adic integers \mathbf{Z}_p = elements $\alpha \in \mathbf{Q}_p$ with $|\alpha_p|_p \leq 1$.

$$\mathbf{Z}_p/p\mathbf{Z}_p = \mathbf{Z}/p\mathbf{Z}$$

$$G_{\mathbf{Q}_p} \twoheadrightarrow G_{\mathbf{Z}/p\mathbf{Z}} = \langle Frob_p \rangle$$

kernel = I_p = inertia group at p.

 $Frob_p =$ (geometric) Frobenius element: $(Frob_p \alpha)^p = \alpha$. If $f \in \mathbf{Q}[X]$ then for an p the image of $I_p \subset G_{\mathbf{Q}}$ is trivial in G_f and so we have a well definied conjugacy class

 $[Frob_p] \subset G_f.$

It is characterized by

 $(Frob_p\alpha)^p \equiv \alpha \mod p$

for α a root of f.

eg $f(X) = X^4 - 2$. $f(X) \equiv (X - 2)(X + 2)(X^2 + 4) \mod 7$ and so $Frob_7$ fixed two roots of fand interchanges two. Thus

 $[Frob_7] = \{(i\sqrt[4]{2}, -i\sqrt[4]{2}), (\sqrt[4]{2}, -\sqrt[4]{2})\}.$

1 $(\sqrt[4]{2}, i\sqrt[4]{2}, -\sqrt[4]{2}, -i\sqrt[4]{2})$ $(\sqrt[4]{2}, -\sqrt[4]{2})(i\sqrt[4]{2}, -i\sqrt[4]{2})$ $(\sqrt[4]{2}, -i\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2})$ $c = (i\sqrt[4]{2}, -i\sqrt[4]{2})$ $(\sqrt[4]{2}, -i\sqrt[4]{2})(-\sqrt[4]{2}, i\sqrt[4]{2})$ $(\sqrt[4]{2}, -\sqrt[4]{2})$ $(\sqrt[4]{2}, i\sqrt[4]{2})(-\sqrt[4]{2}, -i\sqrt[4]{2})$

9

$$[c] = [Frob_7] = \{(i\sqrt[4]{2}, -i\sqrt[4]{2}), (\sqrt[4]{2}, -\sqrt[4]{2})\}.$$
$$X^4 - 2 \equiv (X^2 + X - 1)(X^2 - X - 1) \mod$$
3.

$$[Frob_3] = \{ (\sqrt[4]{2}, -i\sqrt[4]{2})(-\sqrt[4]{2}, i\sqrt[4]{2}), \\ (\sqrt[4]{2}, i\sqrt[4]{2})(-\sqrt[4]{2}, -i\sqrt[4]{2}) \}$$

 $X^{4} - 2 \text{ irreducible mod5.}$ $[Frob_{5}] = \{ (\sqrt[4]{2}, i\sqrt[4]{2}, -\sqrt[4]{2}, -i\sqrt[4]{2}, -i\sqrt[4]{2}, (\sqrt[4]{2}, -i\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}) \}$

$$X^4 - 2 \equiv (X^2 - 6)(X^2 + 6) \mod 17.$$

 $[Frob_{17}] = \{(\sqrt[4]{2}, -\sqrt[4]{2})(i\sqrt[4]{2}, -i\sqrt[4]{2})\}.$

$G_{\mathbf{Q}_p} \subset G_{\mathbf{Q}} \supset \{\mathbf{1}, c\}$

MOTIVATING ALGEBRAIC PROB-LEM:

Describe $G_{\mathbf{Q}}$ along with $G_{\mathbf{Q}_p}$, I_p , $Frob_p$ etc. inside it.

BETTER QUESTION:

Describe the representations of $G_{\mathbf{Q}}$ while keeping track of restrictions to each $G_{\mathbf{Q}_p}$. **e.g.** $\varepsilon_n : \sigma \mapsto \sigma(\sqrt{n})/\sqrt{n} \in \{\pm 1\} \subset \mathbf{Q}^{\times}.$

 $Frob_p \mapsto \mathbf{1}$

iff $X^2 - n$ has 2 solutions in $\mathbf{Z}/p\mathbf{Z}$.

e.g. GROTHENDIECK (1960's):

X/Q smooth projective variety.

 $H^{i}(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}) = H^{i}(X(\mathbf{C}), \mathbf{Q}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}}_{l}$

has a continuous action of $G_{\mathbf{Q}}$

1) For all but finitely many (aa) pthe inertia group I_p acts trivially on $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$ (i.e. is 'unramified' at p) so the conjugacy class $[Frob_p]$ in $\operatorname{Aut}(H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l))$ is defined.

2) $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$ is a de Rham representation of $G_{\mathbf{Q}_l}$ (and for all l it is crystalline).

3) For an p the characteristic polynomial of $Frob_p$ on $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$ (for $l \neq p$) has coefficients in $\overline{\mathbf{Q}}$ and all its roots in \mathbf{C} have absolute value $p^{i/2}$ (i.e. is 'pure' of weight i).

If $V/\overline{\mathbf{Q}}_l$ is a finite dimensional vector space and if

 $r: G_{\mathbf{Q}} \longrightarrow GL(V)$

is a continuous representation satisfying these three properties define an *L*-function L(V, s) as

$$\prod_{p \neq l} \det(\mathbf{1}_V - p^{-s} Frob_p)|_{V^{I_p}}^{-1}$$

 \times (similar factor at l)

in Re s > 1 + i/2.

(We fix once and for all

$$\mathrm{C} \supset \overline{\mathrm{\mathbf{Q}}} \subset \overline{\mathrm{\mathbf{Q}}}_l.)$$

Note

 $L(V_1 \oplus V_2, s) = L(V_1, s)L(V_2, s).$

- e.g. $L(\text{triv}, s) = \zeta(s) = \prod_p (1 1/p^s)^{-1} = \sum_{n=1}^{\infty} 1/n^s$.
- e.g. if $M_p = \#$ of solutions to $X^2 + n \equiv 0 \mod p$ then $L(\varepsilon_n, s)$ equals

$$\prod_{p: M_p=2} (1-1/p^s)^{-1} \prod_{p: M_p=0} (1+1/p^s)^{-1}.$$

e.g. E/Q an elliptic curve and $N_p = #E(Z/pZ)$. Then $Frob_p$ on

 $H^1(E(\mathbf{C}), \overline{\mathbf{Q}}_l) \cong \overline{\mathbf{Q}}_l^2$

has trace $p - N_p$ and determinant p. Thus

 $L(\operatorname{Sym}^{n-1}E, s) = L(\operatorname{Sym}^{n-1}H^1(E(\mathbf{C}), \overline{\mathbf{Q}}_l), s)$

in $\operatorname{Re} s > (n+1)/2$.

e.g. If X/Q is smooth projective set

$$\zeta(X,s) = \prod_{p} \prod_{x \in X \times \mathbf{Z}/p\mathbf{Z}} (1 - p^{-s \deg x})^{-1}.$$

Then

$$\zeta(X,s) = \prod_{i} L(H^{i}(X(\mathbf{C}), \overline{\mathbf{Q}}_{l}), s)^{(-1)^{i}}$$

For instance

$$\zeta(\operatorname{Spec} \mathbf{Q}, s) = \zeta(s)$$

$$\zeta(\operatorname{Spec} \mathbf{Q}(\sqrt{n}), s) = \zeta(s)L(\varepsilon_n, s)$$

$$\zeta(E,s) = \zeta(s)\zeta(s-1)/L(\operatorname{Sym}^1 E, s)$$

FONTAINE-MAZUR CONJECTURE (1988): Suppose that

$$r: G_{\mathbf{Q}} \longrightarrow GL(V)$$

is a continuous irreducible represen-tation satisfying properties 1. and2. Then:

a) (Up to Tate twist) V occurs in some $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$.

b) V also satisfies property 3.

- **1.** For aa p the inertia group I_p acts trivially on $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$.
- 2. $H^{i}(X(\mathbf{C}), \overline{\mathbf{Q}}_{l})$ is a de Rham representation of $G_{\mathbf{Q}_{l}}$.
- 3. For aa p the characteristic polynomial of $Frob_p$ on $H^i(X(\mathbf{C}), \overline{\mathbf{Q}}_l)$ (for $l \neq p$) has coefficients in $\overline{\mathbf{Q}}$ and all its roots in \mathbf{C} have absolute value $p^{i/2}$ (i.e. is 'pure' of weight i).

Topological ring of adeles:

$$\mathbf{A} = \mathbf{R} \times (\mathbf{Q} \otimes_{\mathbf{Z}} \prod_{p} \mathbf{Z}_{p}) \qquad (\subset \mathbf{R} \times \prod_{p} \mathbf{Q}_{p})$$

 $\mathbf{Q} \subset \mathbf{A}$ - discrete and co-compact

$GL_n(\mathbf{Q})\backslash GL_n(\mathbf{A})/\prod_p GL_n(\mathbf{Z}_p) = GL_n(\mathbf{Z})\backslash GL_n(\mathbf{R})$

CLASS FIELD THEORY:

 $Art_p: \mathbf{Q}_p^{\times} \longrightarrow G_{\mathbf{Q}_p}^{ab}$ injective, dense image

$$Art_{\infty} : \mathbf{R}^{\times} / \mathbf{R}_{>0}^{\times} \xrightarrow{\sim} G_{\mathbf{R}}$$

$$Art = \prod_{x} Art_{x} : \mathbf{Q}^{\times} \mathbf{R}_{>0}^{\times} \backslash \mathbf{A}^{\times} \xrightarrow{\sim} G_{\mathbf{Q}}^{ab}$$

Irreducible representations

$$\pi = \bigotimes_{x}' \pi_x$$

are CUSPIDAL AUTOMORPHIC if they occur in

$$L^2_{\chi,0}(GL_n(\mathbf{Q})\setminus GL_n(\mathbf{A})),$$

where (gf)(h) = f(hg).

$$L(\pi,s) = \prod_p L(\pi_p,s)$$

• π_x : π_p (resp. π_∞) is a representation of $GL_n(\mathbf{Q}_p)$ (resp. $GL_n(\mathbf{R})$).

•
$$\chi$$
: $f(zg) = \chi(z)f(g)$ for $z \in \mathbb{R}_{>0}^{\times}$.

• 0: $\int_{N(\mathbf{Q})/N(\mathbf{A})} f(ng) dn = 0$ for N a subgroup

$$\left(\begin{array}{cc}I_m & *\\ 0 & I_{n-m}\end{array}\right) \subset GL_n.$$

EXAMPLES:

GL_1 : Cuspidal automorphic representations ~ Dirichlet characters

 $(\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$

 GL_2 : Regular algebraic cuspidal automorphic forms \sim cuspidal holomorphic modular forms which are newforms.

LANGLANDS RECIPROCITY CON-JECTURE: If

 $\rho: G_{\mathbf{Q}} \longrightarrow GL_n(\overline{Q}_l)$

is a continuous, irreducible representation which is unramified at all but finitely many primes and for which $\rho|_{G_{\mathbf{Q}_l}}$ is de Rham then there is a cuspidal automorphic representation π of $GL_n(\mathbf{A})$ with

$$L(\pi, s) = L(\rho, s).$$

In fact this sets up a bijection between such ρ and π with π_{∞} algebraic. Suppose that

 $r: G_{\mathbf{Q}} \longrightarrow GL(V)$

is a continuous irreducible representation satisfying the reciprocity conjecture then L(V,s) is has analytic continuation to C (except possibly for one simple pole if dim V = 1) and satisfies an (explicit) functional equation relating L(V,s) to $L(V^*, 1-s)$.

If moreover V has weight i then L(V,s) is non-zero in Re $s \ge i/2 + 1$.

(Gelbart-Jacquet)

e.g. Gauss' law of quadratic reciprocity says

$$L(\varepsilon_n, s) = L(\chi, s)$$

for some $\chi : (\mathbf{Z}/4n\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$.

e.g. The Shimura-Taniyama conjecture says that

$$L(\operatorname{Sym}^1 E, s) = L(f_E, s)$$

where

$$f_E(z) = \sum_{n=1}^{\infty} a_n e^{2n\pi i z}$$
,

$$L(f_E,s) = \sum_{n=1}^{\infty} a_n/n^s,$$

$$f((az + b)/(cz + d)) = (cz + d)^2 f(z)$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ with $N_E|c$ (some N_E),

$$f(-1/(N_E z)) = \mp N_E z^2 f(z).$$

Then

$$L(E,s) = (2\pi)^{s}/\Gamma(s) \int_{0}^{\infty} f_{E}(iy)y^{s-1}dy = (2\pi)^{s} 11^{(1-s)/2}/\Gamma(s) \left(N_{E}^{(s-1)/2} \int_{1/\sqrt{N_{E}}}^{\infty} f(iy)y^{s-1}dy \pm N_{E}^{(1-s)/2} \int_{1/\sqrt{N_{E}}}^{\infty} f(iy)y^{1-s}dy\right).$$

Thus L(E, s) extends to an entire function and

$$(2\pi)^{s-2}\Gamma(2-s)L(E,2-s) = \pm N_E^{s-1}(2\pi)^{-s}\Gamma(s)L(E,s).$$

Conjecture (Birch-Swinnerton-Dyer, 1963): There are infinitely many pairs (x, y) of rational numbers sat-isfying

$$y^2 = x^3 + cx + d$$

if and only if L(E, 1) = 0.

Theorem (Gross-Zagier 1986, Koly-vagin 1989): True if order of van-ishing ≤ 1 .