Tarski Lecture 2 in unicode

Lecture 2. Reverse Mathematics: A Global View

April 26, 4:10pm, Evans 60

We view the structure of reverse mathematics as a degree structure similar to that of the Turing degrees, \mathcal{D}_{T} with the ordering of Turing reducibility, \leq_{T}. We define an ordering \leq_{P} on sets of sentences of second order arithmetic $S \leq_{P} T \Leftrightarrow R C A_{O} \cup T \vdash$ φ for every $\varphi \in S$. As usual we consider the induced ordering \leq_{p} on the equivalence classes \boldsymbol{s} and \boldsymbol{t} and the resulting structure \mathcal{D}_{P}. Important substructures are \mathscr{T}_{P} and \mathscr{R}_{P} consisting of the degrees of finitely and recursively axiomatizable sets of sentences. We prove a large number of global results about \mathcal{D}_{P} that differ remarkably from those for the analogous questions about \mathcal{D}_{T} and other degree structures. A few sample results are the following.

Theorem: \mathcal{D}_{P} is a complete algebraic lattice (with O and 1) and so pseudocomplemented. \mathscr{R}_{P} is an incomplete algebraic lattice. For each of them the compact elements are those in $\mathscr{\mathscr { P }}_{P}$ and the pseudocomplement of T in \mathcal{D}_{P} is $v\{\varphi \mid \varphi \wedge$ $T=O\} . \mathscr{T}_{P}$ is the atomless Boolean algebra.

Theorem: The (first order) theories of \mathscr{F}_{P} and \mathcal{D}_{P} with \leq_{P} (and so with v, \wedge, o, and 1) are decidable by applying major results of Tarski and Rabin.

Theorem: \mathcal{D}_{P} and $\mathscr{\mathscr { T }}_{P}$ have exactly 2^{ω} many automorphisms

Theorem: There are only four finite sets which are definable in $\mathcal{D}_{P}: \varnothing,\{0\}$, $\{1\}$ and $\{0,1\}$. There are only four countably infinite definable subsets of \mathcal{D}_{P} : $\mathscr{\mathscr { T }}_{P}, \mathscr{\mathscr { T }}^{-}{ }^{-}$
$\{0\}, \mathscr{F}_{P}-\{1\}$ and $\mathscr{\mathscr { F }}_{P}-\{0,1\}$. In each case, no other such sets are fixed under all automorphisms of \mathcal{D}_{P}.

Theorem: Up to isomorphism, there are only four cones $\mathcal{D}_{P}{ }^{s}=\left\{\boldsymbol{t} \mid \boldsymbol{s} \leq_{P} \boldsymbol{t}\right\}$ in \mathcal{D}_{P} : $\{\mathbf{1}\},\{\boldsymbol{s}, \mathbf{1}\},\left\{\boldsymbol{s}, \boldsymbol{s} \vee \boldsymbol{t}_{o}, \boldsymbol{s} \vee \boldsymbol{t}_{1}, \mathbf{1}\right\}$ and \mathcal{D}_{P}. We can characterize the few \boldsymbol{s} that fall into each of the first three classes in terms of notions familiar in the general study of theories.

This analysis was prompted by my thinking about what I should talk about in these lectures. Much to my surprise, after I had worked out most of these results I discovered that Tarski had proven many of them some ninety years ago and so long before the rise of reverse mathematics.

