

Kathryn Mills <kathrynmills@berkeley.edu>

Tarski Lecture 2 in unicode

1 message

Gabriel Goldberg <ggoldberg@berkeley.edu> To: Kathryn Mills <kathrynmills@berkeley.edu> Mon, Apr 24, 2023 at 9:23 AM

Lecture 2. Reverse Mathematics: A Global View

April 26, 4:10pm, Evans 60

We view the structure of reverse mathematics as a degree structure similar to that of the Turing degrees, \mathcal{D}_T with the ordering of Turing reducibility, \leq_T . We define an ordering \leq_P on sets of sentences of second order arithmetic $S \leq_P T \Leftrightarrow RCA_O \cup T \vdash \varphi$ for every $\varphi \in S$. As usual we consider the induced ordering \leq_P on the equivalence classes **s** and **t** and the resulting structure \mathcal{D}_P . Important substructures are \mathscr{F}_P and \mathscr{R}_P consisting of the degrees of finitely and recursively axiomatizable sets of sentences. We prove a large number of global results about \mathcal{D}_P that differ remarkably from those for the analogous questions about \mathcal{D}_T and other degree structures. A few sample results are the following.

Theorem: \mathcal{D}_P is a complete algebraic lattice (with *O* and *1*) and so pseudocomplemented. \mathscr{R}_P is an incomplete algebraic lattice. For each of them the compact elements are those in \mathscr{F}_P and the pseudocomplement of *T* in \mathcal{D}_P is $v\{\varphi \mid \varphi \land$ $T = O\}$. \mathscr{F}_P is the atomless Boolean algebra.

Theorem: The (first order) theories of \mathscr{F}_P and \mathscr{D}_P with \leq_P (and so with v, \land, o , and *1*) are decidable by applying major results of Tarski and Rabin.

Theorem: \mathcal{D}_P and \mathscr{F}_P have exactly 2^{ω} many automorphisms

Theorem: There are only four finite sets which are definable in \mathcal{D}_P : \mathcal{O} , {*o*}, {*1*} and {*0*,*1*}. There are only four countably infinite definable subsets of \mathcal{D}_P : \mathscr{F}_P , \mathscr{F}_P -

{*O*}, \mathscr{F}_P - {1} and \mathscr{F}_P - {*O*,1}. In each case, no other such sets are fixed under all automorphisms of \mathcal{D}_P .

Theorem: Up to isomorphism, there are only four cones $\mathcal{D}_P^s = \{t \mid s \leq_P t\}$ in \mathcal{D}_P : $\{1\}, \{s, 1\}, \{s, s \lor t_0, s \lor t_1, 1\}$ and \mathcal{D}_P . We can characterize the few *s* that fall into each of the first three classes in terms of notions familiar in the general study of theories.

This analysis was prompted by my thinking about what I should talk about in these lectures. Much to my surprise, after I had worked out most of these results I discovered that Tarski had proven many of them some ninety years ago and so long before the rise of reverse mathematics.