MATH 110 - FINAL

LECTURE 1, SUMMER 2009
August 13, 2009

Name:

1. (10 points) Give two equivalent definitions (or characterizations) of each of the following.
(a) A normal operator on an inner-product space V.
(b) A generalized eigenvector of an operator T.
(c) A positive operator on an inner-product space V.
(d) An isometry on an inner-product space V.
2. (15 points) Give examples, with brief justification, of each of the following.
(a) An operator on \mathbb{R}^{2} which is not self-adjoint with respect to the standard inner product.
(b) An isometry on \mathbb{R}^{4} with no (real) eigenvalues.
(c) An operator on \mathbb{C}^{4} whose characteristic polynomial equals the square of its minimal polynomial.
3. (20 points) Suppose that P is an operator on an inner-product space V such that $P^{2}=P$. Prove that P is an orthogonal projection if and only if it is self-adjoint.
4. (20 points) Suppose that T is a self-adjoint operator on a inner-product space V such that there exists $v \in V$ with $\|v\|=1$ such that $\langle T v, v\rangle>1$. Prove that there exists an eigenvalue of T which is larger than 1. (Hint: Spectral Theorem)
5. (20 points) Let V be a complex vector space. If you get stuck on part (a) below, assume it is true and use it in part (b).
(a) Prove that if N is a nilpotent operator on V, then $N+I$ has a square root.
(b) Prove that any invertible operator T on V has a square root. (Hint: Use the generalized eigenspaces of T)
6. (15 points) Suppose that an operator T on a complex vector space has characteristic polynomial $z^{3}(z-2)^{5}(z+1)^{2}$ and minimal polynomial of the form

$$
z^{2}(z-2)^{k}(z+1)^{\ell} \text { where } k>2 \text { and } \ell \geq 1 .
$$

Suppose further that dimrange $(T-2 I)=7$ and that the eigenspace corresponding to -1 is 1-dimensional. Find, with justification, the Jordan blocks which make up the Jordan form of T. You do not have to write out the full Jordan form itself.
7. (0 points) Draw a picture portraying your love of linear algebra.

