Math 115
 First Midterm Exam

Professor K. A. Ribet
 February 25, 1998

Instructions: Answer question \#2 and three other questions.
1 (6 points). Find all solutions to the congruence $x^{2} \equiv p \bmod p^{2}$ when p is a prime number.

2 (9 points). Using the equation $7 \cdot 529-3 \cdot 1234=1$, find an integer x which satisfies the two congruences $x \equiv\left\{\begin{array}{ll}123 & \bmod 529 \\ 321 & \bmod 1234\end{array}\right.$ and an integer y such that $7 y \equiv 1 \bmod 1234$. (No need to simplify.)

3 (7 points). Suppose that p is a prime number. Which of the $p+2$ numbers $\binom{p+1}{k}(0 \leq k \leq p+1)$ are divisible by p ? [Example: The seven binomial coefficients $\binom{6}{k}$ are $1,6,15,20,15,6,1$; the middle three are divisible by 5 .]

4 (7 points). Let p be a prime and let n be a non-negative integer. Suppose that a is an integer prime to p. Show that $b:=a^{p^{n}}$ satisfies $b \equiv a \bmod p$ and $b^{p-1} \equiv 1 \bmod p^{n+1}$.

5 (6 points). Show that $n^{4}+n^{2}+1$ is composite for all $n \geq 2$.

