Take-home Exam, due April 7, 1994
Let p be a prime number greater than 3 . Let N_{p} be the number of solutions to $y^{2}=x^{3}-x$ in \mathbf{F}_{p}.

1. Show that $N_{p}=p+\sum_{a \in \mathbf{F}_{p}}\left(\frac{a^{3}-a}{p}\right)$.
2. Prove that $N_{p}=p$ if $p \equiv 3(\bmod 4)$.
3. Suppose from now on that $p \equiv 1 \bmod 4$. Recall from class that p may be written in the form $r^{2}+s^{2}$ where r and s are integers, cf. Proposition 8.3 .1 of the text. Since p is odd, r and s cannot have the same parity - we will suppose that r is odd and that s is even. Show that r and s are then determined up to sign. (This is a restatement of problem 12 on page 106 of the book.)
4. While I'm at it, let me assign problem 13 on page 106. This came up in class.
5. Let $E=p-N_{p}=-\sum_{a \in \mathbf{F}_{p}}\left(\frac{a^{3}-a}{p}\right)=-\sum_{a \in \mathbf{F}_{p}}\left(\frac{a-a^{3}}{p}\right)$; we think of E as an error term. Here is a table giving the value of E for twenty-one small primes p :

p	13	17	29	37	41	53	61	73	89	97	101	109	113	137	149	157	173	181	193	197	229
E	6	2	-10	-2	10	14	-10	-6	10	18	-2	6	-14	-22	14	22	-26	-18	-14	-2	30

6. Calculate r and s for a fair number of the twenty-one primes p which appear in the table. Following in the 1814 footsteps of Gauss, conjecture a rule which determines E in terms of r and s. For example, decide what E ought to be when $p=144169=(315)^{2}+(212)^{2}$.
7. Let χ be a character of order 4 on \mathbf{F}_{p}^{*}, so that χ^{2} is the quadratic symbol $(\dot{\bar{p}})$. Show that $E=-2 \operatorname{Re} J$, where $J=J\left(\chi, \chi^{2}\right)$. Check this general formula by calculating E and J explicitly in the case where $p=5$ and χ is the character mapping 2 to i.
8. Regard J as an element of $\mathbf{Z}[i]$. Show that $J+1$ is divisible by $(2+2 i)$. (See page 168 of the book if you get stuck.)
9. Suppose that $J=\alpha+i \beta$ where α and β are integers. Explain why α is odd, β is even, $\alpha+\beta+1$ is divisible by 4 and $\alpha^{2}+\beta^{2}=p$. Recapitulate what you have learned in the form of a rule for calculating N_{p} when p is congruent to $1 \bmod 4$.
