First Midterm Exam, February 22, 1994

1. Is 270 a square modulo the prime number 691 ?
2. The decimal expansion of $1 / 7$ is $0 . \overline{142857}=.142857142857 \ldots$. Find all prime numbers p for which the decimal expansion of $1 / p$ has period six. [It may help to know that $99=3^{2} \cdot 11,999=3^{3} \cdot 37,9999=3^{2} \cdot 11 \cdot 101$, $99999=3^{2} \cdot 41 \cdot 271$, and $999999=3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 37$.]
3. Using the Euclidean algorithm, find integers n and m such that $13 n+$ $47 m=1$.
4. Let n be a positive integer. Calculate the limit $\lim _{k \rightarrow \infty} \frac{n^{k+1}}{\sigma\left(n^{k}\right)}$, where σ denotes, as usual, the function whose value at m is the sum of the divisors of m.
5. Show that there are an infinite number of primes which are congruent to $7 \bmod$ 8. [If P_{1}, \ldots, P_{n} are such primes, consider $\left(P_{1} \cdots P_{n}\right)^{2}-2$.]
6. Let n be a positive integer. Show that $2^{n} \equiv 1 \bmod n$ if and only if $n=1$. [For $n>1$, consider the situation modulo the smallest prime number dividing n.]
