1. Let A be a finite abelian group. If $\varphi: A \rightarrow \mathbf{C}^{*}$ is a non-trivial homomorphism, show that $\sum_{a \in A} \varphi(a)=0$.
2. Calculate the number of solutions to the congruence $x^{3} \equiv 8 \bmod 5040$. (Note that $5040=7!$.)
3. A pseudoprime is a composite integer p for which $2^{p} \equiv 2 \bmod p$. Show that $11 \cdot 31$ is a pseudoprime. Prove that every Fermat number $2^{2^{n}}+1$ is either a prime or a pseudoprime. [The first known even pseudoprime - 161038 - was found by Berkeley's D. H. Lehmer in 1950.]
4. Suppose that p is an odd prime and that a is an integer prime to p. Gauss's lemma may be summarized as the identity $\left(\frac{a}{p}\right)=(-1)^{\mu}$. Explain the definition of the quantity μ that appears in this formula. Use Gauss's lemma to compute $\left(\frac{2}{p}\right)$ when $p \equiv 1 \bmod 8$.
5. Recall that $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ for $s>1$. Prove that $\zeta(s)-1<\int_{1}^{\infty} t^{-s} d t<\zeta(s)$ by using techniques from first-year calculus. Use these inequalities to prove that the limit $\lim _{s \rightarrow 1^{+}}(s-1) \zeta(s)$ exists and equals 1 . (In this problem, s is always a real number.)
6. Let $D=\mathbf{Z}[\omega]$, where ω is a complex third root of 1 .
a. Show that the unit group of D has order 6 .
b. If u is a unit of D which is congruent to $1 \bmod (3)$, prove that $u=1$.
7. Let $\zeta=e^{2 \pi i / p}$, where $p \geq 3$ is prime. Show that $\sum_{a \bmod p}\left(\frac{a}{p}\right) \zeta^{a}=\sum_{a \bmod p} \zeta^{a^{2}}$.
8. Let p be an odd prime, and let J be the Jacobi sum $\sum_{a \in \mathbf{F}_{p}} \psi(a) \varphi(1-a)$, where ψ and φ are non-trivial characters $\mathbf{F}_{p}^{*} \rightarrow \mathbf{C}^{*}$.
a. What value did we find for J in case $\psi \varphi$ is the trivial character?
b. What expression did we obtain for J if $\psi \varphi$ is not the trivial character?
c. Show that every prime congruent to 1 modulo 4 is the sum of two integral squares.
