UCB Math 128A-2, Summer 2009: Final Exam Thursday 8/13

	Grading		
	1.		10
 Do not open until instructed to do so. Books, notes, and calculators are not allowed. Justify all answers. Time limit is 120 minutes. If you get stuck on a (sub)problem, please move on and try it again later. Some of these problems are meant to be hard. 	2.		10
	3.	./	10
	4.	/	10
	5.	./	10
	6.	./	10
	7.		10
	8.		10
	9.		10
	10.	/	10
		/	100

Scratch/extra work

Scratch/extra work

- 1. (a) Prove that the bisection method on [1,2] will converge to a root of $x^3 x 1$.
 - (b) Find a bound on the absolute error in approximating this root after n iterations.
 - (c) How many iterations are necessary to ensure the relative error is at most 2^{-5} ? (Your answer does not have to be exact.)

- 2. (a) Find an algebraic expression for the unique root (in \mathbb{R}) of $f(x) = x^2 2/x$. (b) Newton's method searches for this root using the iteration $p_{n+1} = g(p_n)$. Find g(x). Simplify your answer.
 - (c) Is the convergence linear? Is it at least quadratic?
 - (d) Find the exact order of convergence.

- 3. (a) Estimate y(1/2) with polynomial interpolation given the data y(0) = 1, y(1) = 2. (b) Repeat part (a) with Hermite interpolation, if y(t) is a solution to y' = y.

- 4. (a) Transform $\int_{-3}^{3} \frac{1}{t^2+1} dt$ to an integral of the form $\int_{-1}^{1} f(x) dx$. (b) Find the coefficients below for the three-point Gaussian quadrature rule:

$$\int_{-1}^{1} f(x) dx \approx af\left(-\sqrt{\frac{3}{5}}\right) + bf(0) + cf\left(+\sqrt{\frac{3}{5}}\right).$$

- (c) What is this rule's degree of precision?
- (d) Estimate the integral from (a) using this rule. Express your answer as a fraction.

- 5. (a) Find the local truncation error for the method $w_{i+1} = 4w_i 3w_{i-1} 2hf(t_{i-1}, w_{i-1})$. (b) Classify this multistep method as strongly stable, weakly stable, or unstable.

6. Describe (algebraically) the region of absolute stability for Heun's Method,

$$w_{i+1} = w_i + \frac{h}{4} [f(t_i, w_i) + 3f(t_i + \frac{2}{3}h, w_i + \frac{2}{3}hf(t_i, w_i))].$$

7. (a) Explain how the second-order IVP y'' + 4y' - 5y = 0, y(0) = 2, y'(0) = -3 is equivalent to this system of first-order IVPs:

$$\mathbf{u}' = \begin{bmatrix} 0 & 1 \\ 5 & -4 \end{bmatrix} \mathbf{u}, \quad \mathbf{u}(0) = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

(b) If A is the above matrix, find $||A||_{\infty}$.

8. Solve this system via elimination with partial pivoting followed by back substitution.

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -2 & 5 & 1 & 2 \\ -1 & 4 & 5 & -2 \end{bmatrix}$$

9. Let
$$A = \begin{bmatrix} 4 & 2 & 0 & 0 \\ 2 & 5 & 2 & 0 \\ 0 & 2 & 5 & 2 \\ 0 & 0 & 2 & 5 \end{bmatrix}$$
.

- (a) Is A strictly diagonally dominant?
- (b) Perform elimination with no pivoting. Compute $\det(A)$ using the result.
- (c) Is A a symmetric, positive definite matrix?

10.

Find a Cholesky (LL^*) factorization for this matrix: $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 1 & 6 \end{bmatrix}$.