UCB Math 128A-2, Summer 2009: Final Exam Thursday 8/13

Name:

- Do not open until instructed to do so.
- Books, notes, and calculators are not allowed.
- Justify all answers.
- Time limit is 120 minutes.
- If you get stuck on a (sub)problem, please move on and try it again later. Some of these problems are meant to be hard.

Grading		
1.		
2.		10
3.		10
3.		10
4.		10
5.	$/$	10
6.	$/$	10
7.	$/$	10
8.	$/$	10
9.	$/$	10
10.	$/$	10

1. (a) Prove that the bisection method on $[1,2]$ will converge to a root of $x^{3}-x-1$.
(b) Find a bound on the absolute error in approximating this root after n iterations.
(c) How many iterations are necessary to ensure the relative error is at most 2^{-5} ? (Your answer does not have to be exact.)
2. (a) Find an algebraic expression for the unique root (in \mathbb{R}) of $f(x)=x^{2}-2 / x$.
(b) Newton's method searches for this root using the iteration $p_{n+1}=g\left(p_{n}\right)$. Find $g(x)$. Simplify your answer.
(c) Is the convergence linear? Is it at least quadratic?
(d) Find the exact order of convergence.
3. (a) Estimate $y(1 / 2)$ with polynomial interpolation given the data $y(0)=1, y(1)=2$.
(b) Repeat part (a) with Hermite interpolation, if $y(t)$ is a solution to $y^{\prime}=y$.
4. (a) Transform $\int_{-3}^{3} \frac{1}{t^{2}+1} d t$ to an integral of the form $\int_{-1}^{1} f(x) d x$.
(b) Find the coefficients below for the three-point Gaussian quadrature rule:

$$
\int_{-1}^{1} f(x) d x \approx a f\left(-\sqrt{\frac{3}{5}}\right)+b f(0)+c f\left(+\sqrt{\frac{3}{5}}\right) .
$$

(c) What is this rule's degree of precision?
(d) Estimate the integral from (a) using this rule. Express your answer as a fraction.
5. (a) Find the local truncation error for the method $w_{i+1}=4 w_{i}-3 w_{i-1}-2 h f\left(t_{i-1}, w_{i-1}\right)$.
(b) Classify this multistep method as strongly stable, weakly stable, or unstable.
6. Describe (algebraically) the region of absolute stability for Heun's Method,

$$
w_{i+1}=w_{i}+\frac{h}{4}\left[f\left(t_{i}, w_{i}\right)+3 f\left(t_{i}+\frac{2}{3} h, w_{i}+\frac{2}{3} h f\left(t_{i}, w_{i}\right)\right)\right] .
$$

7. (a) Explain how the second-order IVP $y^{\prime \prime}+4 y^{\prime}-5 y=0, y(0)=2, y^{\prime}(0)=-3$ is equivalent to this system of first-order IVPs:

$$
\mathbf{u}^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
5 & -4
\end{array}\right] \mathbf{u}, \quad \mathbf{u}(0)=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

(b) If A is the above matrix, find $\|A\|_{\infty}$.
8. Solve this system via elimination with partial pivoting followed by back substitution.

$$
\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
-2 & 5 & 1 & 2 \\
-1 & 4 & 5 & -2
\end{array}\right]
$$

9. Let $A=\left[\begin{array}{llll}4 & 2 & 0 & 0 \\ 2 & 5 & 2 & 0 \\ 0 & 2 & 5 & 2 \\ 0 & 0 & 2 & 5\end{array}\right]$.
(a) Is A strictly diagonally dominant?
(b) Perform elimination with no pivoting. Compute $\operatorname{det}(A)$ using the result.
(c) Is A a symmetric, positive definite matrix?
10.

Find a Cholesky $\left(L L^{*}\right)$ factorization for this matrix: $A=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 1 & 6\end{array}\right]$

