Suppose that x, y, p, q are real numbers with $x \geq 0, y \geq 0, p>1,1 / p+1 / q=1$. Prove Young's inequality

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

Solution: Fix y and consider $x y-x^{p} / p-y^{q} / q$ as a function of x. It is at most zero for $x=0$ and for x large, so it is enough to check it is at most zero at all critical points. Differentiation shows that the only critical point is $x=y^{p-1}$ when it is 0 .

Problem 2A.

Suppose $f:[0,1] \rightarrow R$ is a continuous function with

$$
\int_{0}^{1} x^{n} f(x) d x=0
$$

for all integers n with $1 \leq n<\infty$. Prove that f is identically 0 .
Solution: We can say that $f(x)$ is identically 0 .
Let $F(x)=\int_{x}^{1} f(s) d s$, so that

$$
\int_{0}^{1} x^{m} F(x) d x=0
$$

by integration by parts (since $F(1)=0$) for all $m \geq 0$. By linearity of the integral, F is orthogonal to polynomials:

$$
\int_{0}^{1} P(x) F(x) d x=0
$$

whenever P is a polynomial. Let $\epsilon>0$ and let P be a polynomial which approximates f within ϵ on the interval $[0,1]$, by the Weierstrass approximation theorem. Then

$$
\int_{0}^{1} F(x)^{2} d x=\int_{0}^{1} F(x) P(x) d x+\int_{0}^{1} F(x)(F(x)-P(x)) d x \leq \sqrt{\int_{0}^{1} F(x)^{2} d x} \sqrt{\int_{0}^{1}(F(x)-P(x))^{2} d x}
$$

by orthogonality and the Cauchy-Schwarz inequality. By choice of P,

$$
\int_{0}^{1} F(x)^{2} d x \leq \epsilon \sqrt{\int_{0}^{1} F(x)^{2} d x}
$$

Cancelling a square root factor shows that

$$
\int_{0}^{1} F(x)^{2} d x \leq \epsilon^{2}
$$

and since $\epsilon>0$ was arbitrary we have

$$
\int_{0}^{1} F(x)^{2} d x=0
$$

Since F is continuous it must vanish identically, and then $f(x)=-F^{\prime}(x)$ must vanish identically as well.

Problem 3A.
Score:

Suppose that X is an uncountable subset of the reals. Prove that there is a point of X that is a limit of a sequence of distinct points of X.

Solution: If not, then for every point of $x \in X$ we can find an integer n_{x} such that no point of X is within $1 / n_{X}$ of x. Since X is uncountable, there is some integer n with an uncountable number of points such that $n_{x}=n$. But any 2 points of this set must be at distance at least $1 / n$, so there are only countable number of them.

Problem 4A.

Score:
(a). Show that there is a function $f(z)$, holomorphic (analytic) near $z=0$, such that

$$
f(z)^{10}=\frac{1}{\cos \left(z^{5}+2 z^{7}\right)}-1
$$

for all z in a neighborhood of $z=0$.
(b). Find the radius of convergence of its power series about $z=0$. Your answer may involve a root of an explicitly given polynomial.

Solution:

(a). From the power series for the cosine function, we have

$$
\cos \left(z^{5}-z^{7}\right)=1-\frac{\left(z^{5}-z^{7}\right)^{2}}{2!}+\cdots=1-\frac{z^{10}}{2}+z^{12}+\ldots
$$

and therefore

$$
\frac{1}{\cos \left(z^{5}-z^{7}\right)}=1+\frac{z^{10}}{2}+\ldots
$$

Therefore $\frac{1}{\cos \left(z^{5}+2 z^{7}\right)}-1$ has a zero of order 10 at $z=0$, and so

$$
\frac{1}{\cos \left(z^{5}+2 z^{7}\right)}-1=z^{10} g(z)
$$

near $z=0$, where g extends to a holomorphic function near $z=0$ which does not vanish at $z=0$. We may then let

$$
f(z)=\exp \left(\frac{\log g(z))}{10}\right)
$$

and this is holomorphic at $z=0$.
(b). We have $\cos z=0$ only at odd integer multiples of $\pi / 2$, and $\cos z=1$ only if $\sin z=0$, which happens only at integer multiples of π. Having removed the singularity at $z=0$, we have that f is holomorphic on the set where $\left|z^{5}+2 z^{7}\right|<\pi / 2$, so the largest radius of convergence is the positive root r of $x^{5}+2 x^{7}=\pi / 2$, since $|z|<r$ implies $\left|z^{5}+2 z^{7}\right| \leq$ $|z|^{5}+2|z|^{7}<r^{5}+2 r^{7}=\pi / 2$, and $\cos \left(z^{5}+2 z^{7}\right)=0$ when $z=r$.

Problem 5A.
Score:

Let $f(z)$ be a function holomorphic on the whole complex plane \mathbb{C} such that $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$. Show that $\overline{f(z)}=f(\bar{z})$ for all $z \in \mathbb{C}$.

Solution:

Let $g(z)=\overline{f(\bar{z})}$. By Cauchy-Riemann condition $g(z)$ is holomorphic and therefore $h(z)=$ $f(z)-g(z)$ is also holomorphic on \mathbb{C}. One the other hand, $h(z)=0$ for any $z \in \mathbb{R}$. Again Cauchy-Riemann equations imply that $h(z) \equiv 0$.

Problem 6A.

Score:

Let T be a linear transformation of a vector space V into itself. Suppose that $T^{m+1}=0$, $T^{m} \neq 0$ for some positive integer m. Show that there is a vector x such that $x, T x, \ldots, T^{m} x$ are linearly independent.

Solution:

Pick x so that $T^{m} x \neq 0$. If the points are linearly dependent, choose a relation $a_{k} T^{k} x+$ $\ldots+a_{m} T^{m} x=0$ with $a_{k} \neq 0$ and k as large as possible. Applying T gives a similar relation with a larger k, contradiction.

Problem 7A.

Score:

Suppose n is a positive integer and let f be the function $f(x)=\left(1, x, x^{2}, \ldots x^{n-1}\right)$ from \mathbb{R} to \mathbb{R}^{n}, Show that a hyperplane (of codimension 1) containing the points $f(1), f(2), \ldots, f(n)$ does not pass through the origin.

Solution: This is equivalent to showing that the points are linearly independent. So it is enough to show that the determinant formed by their coordinates is nonzero. But this is a Vandermonde determinant, which shows it is nonzero.

Problem 8A.
Score:

Let A be an abelian group. Suppose that $a \in A$ and $b \in A$ have orders h and k, respectively, and that h and k are relatively prime.

Let r and s be integers. Show that if $r a=s b$ then $r a=s b=0$.
Solution: Since h and k are relatively prime, they generate the unit ideal in \mathbb{Z}, so there exist integers x and y such that $x h+y k=1$. Therefore,

$$
r a=(x h+y k) r a=x h(r a)+y k(s b)=x r(h a)+y s(k b)=0,
$$

and therefore also $s b=0$.

Problem 9A.

Let \mathbf{F} be a field and let X be a finite set. Let $R(X, \mathbf{F})$ be the ring of all functions from X to \mathbf{F}, endowed with the pointwise operations. What are the maximal ideals of $R(X, \mathbf{F})$?

Solution:

Let $R=R(X, \mathbf{F})$. For all $x \in X$ and $a \in \mathbf{F}$ let $\phi_{x, a}: X \rightarrow \mathbf{F}$ be the function given by $\phi_{x, a}(x)=a$ and $\phi_{x, a}\left(x^{\prime}\right)=0$ for all $x^{\prime} \neq x$.

Let I be an ideal of R, and let $S \subseteq X$ be the set

$$
S=\{x \in X: f(x) \neq 0 \text { for some } f \in I\} .
$$

Then, for all $x \in S$, the ideal I contains the function $\phi_{x, 1}$ since I contains some element f with $f(x) \neq 0$; then

$$
\phi_{x, 1}=\phi_{x, f(x)^{-1}} \cdot f \in I .
$$

For any $f: X \rightarrow \mathbf{F}$ that vanishes at all $x \notin S$, we then have

$$
f=\sum_{x \in S} f(x) f_{x, 1} \in I ;
$$

therefore $I=\{f: X \rightarrow \mathbf{F}: f(x)=0$ for all $x \notin S\}$.
Conversely, for any $S \subseteq X$ the set of all functions $X \rightarrow \mathbf{F}$ supported on S is an ideal of R. This therefore gives a bijection between the set of subsets of X and the set of ideals of R.

Therefore the set of maximal ideals of R is the set

$$
\left\{\operatorname{ker} \psi_{x}: x \in X\right\}
$$

where $\psi_{x}: R \rightarrow \mathbf{F}$ is the function that takes $f \in R$ to $f(x) \in \mathbf{F}$ (which is a ring homomorphism).

Problem 1B.

Score:

Which of the following series converge? Give reasons.
1.

$$
\sum_{n=1}^{\infty} \frac{(2 n)!(3 n)!}{n!(4 n)!}
$$

2.

$$
\sum_{n=2}^{\infty} \frac{1}{n^{1+1 /(\log n)^{2}}}
$$

Solution: The first converges by the ration test, and the second diverges by comparison with the harmonic series.

Problem 2B.

Suppose that f is a smooth function from the reals to the reals satisfying the differential equation

$$
f^{\prime}(x)=\sin (f(x)) e^{-x^{2}}
$$

Prove that f is bounded.

Solution:

$$
|f(a)-f(b)| \leq \int_{a}^{b} \mid f^{\prime}(x) d x \leq \int_{-\infty}^{\infty} e^{-x^{2}} d x \text { which is finite, so } f \text { is bounded. }
$$

Problem 3B.

Score:

Let the function f be given by $f(x)=0$ if x is irrational and $f(x)=1 / n^{2}$ if $x=m / n$ where m, n are coprime integers and $n>0$. Show that there is a point where f is continuous but not differentiable.

Solution:

The function f is continuous at all irrational points, so in particular if the derivative exists at some point it must be 0 . Suppose x is the limit of the numbers $x_{m}=1 / 2^{1}+1 / 2^{2}+$ $\cdots+1 / 2^{2^{m}}$ then $\left(f(x)-f\left(x_{m}\right)\right) /\left(x-x_{m}\right)$ does not tend to 0 as m tends to infinity, so f is not differentiable at x.

Problem 4B.

Score:

Evaluate

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)^{2}} d x
$$

Solution:

The integrand is the imaginary part of the function

$$
f(z)=\frac{z e^{i z}}{\left(z^{2}-1\right)^{2}}
$$

so we will use contour integration to evaluate this integral.
For all (real) $R>1$ let C_{R} be the positively oriented contour consisting of the interval $[-R, R]$ on the real axis, together with the semicircle $|z|=R, \operatorname{Im} z \geq 0$. The function f is holomorphic except for double poles at $z= \pm i$, so we need to find its residue at $z=i$. Write

$$
f(z)=\frac{g(z)}{(z-i)^{2}}, \quad \text { where } \quad g(z)=\frac{z e^{i z}}{(z+i)^{2}}
$$

Then the residue of f at $z=i$ is the coefficient of $z-i$ in the Taylor series expansion of $g(z)$ about $z=i$, which is

$$
\begin{aligned}
g^{\prime}(i) & =\left.\left(\frac{\left(e^{i z}+i z e^{i z}\right)(z+i)^{2}-2(z+i) z e^{i z}}{(z+i)^{4}}\right)\right|_{z=i} \\
& =\frac{\left(e^{-1}-e^{-1}\right)(2 i)^{2}-2(2 i) i e^{-1}}{(2 i)^{4}} \\
& =\frac{0-4 i^{2} e^{-1}}{16 i^{4}} \\
& =\frac{1}{4 e} .
\end{aligned}
$$

Therefore

$$
\oint_{C_{R}} f(z) d z=2 \pi i \cdot \frac{1}{4 e}=\frac{\pi i}{2 e} .
$$

Since $\left|e^{i z}\right|=e^{-\operatorname{Im} z} \leq 1$ for all z in the upper half plane, we have $|f(z)| \leq R /\left(R^{2}-1\right)^{2}$ on the semicircle in C_{R}. The length of this semicircle is πR, so the contribution of the integral along the semicircle to the contour integral is bounded in absolute value by $\pi R^{2} /\left(R^{2}-1\right)^{2}$, which $\rightarrow 0$ as $R \rightarrow \infty$.

Therefore, in the limit as $R \rightarrow \infty$, the integral along the semicircle approaches 0 , and we have

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)^{2}} d x=\operatorname{Im} \lim _{R \rightarrow \infty} \oint_{C_{R}} f(z) d z=\operatorname{Im} \frac{\pi i}{2 e}=\frac{\pi}{2 e}
$$

Problem 5B.

Suppose that the complex function f is holomorphic and bounded for $\Re(z)>0$. Prove that it is uniformly continuous for $\Re(z)>1$.

Solution:

By the Cauchy integral formula the derivative is bounded in the region $\Re(z)>1$, so the function is uniformly continuous in this region.

Problem 6B.

Score:

Prove that a complex square matrix of finite order is diagonalizable. Give an example of a square matrix of finite order (over some other algebraically closed field) that is not diagonalizable.

Solution:

The minimal polynomial of a matrix of finite order n divides the polynomial $x^{n}-1$. Over the complex numbers this has no repeated roots so the matrix is diagonalizable.

The matrix $\binom{11}{01}$ over a field of characteristic 2 has order 2 but is not diagonalizable.

Problem 7B.
Score:

Find the number of conjugacy classes of complex 5 by 5 matrices such that all eigenvalues are 1.

Solution:

Putting the matrix in Jordan normal form show that the number of conjugacy classes is the number of partitions of 5 , which is 7 .

Problem 8B.
Score:

Let G be a finite group and H be a subgroup.
(a) Show that the number of subgroups of G conjugate to H divides the index of H.
(b) Show that if

$$
G=\bigcup_{g \in G} g H g^{-1}
$$

then $G=H$.

Solution:

(a) Let X denote the set of all subgroups conjugate to H. Then G acts transitively on X and the stabilizer of $H \in X$ coincides the normalizer $N(H)$ of H. Then

$$
|X|=\frac{|G|}{|N(G)|}=\frac{[G: H]}{[N(H): H]} .
$$

(b) Since any subgroup contains the identity element we have

$$
\left|\bigcup_{g \in G} g H g^{-1}\right| \leq|X||H|-|X|+1
$$

Since $|X||H| \leq|G|$ we have $0 \leq 1-|X|$. This implies $|X|=1, H$ is normal and therefore $H=G$.

Let $p(z)$ be a polynomial with real coefficients such that $p(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Show that if the degree of $p(z)$ is d then $d!p(z) \in \mathbb{Z}[z]$.

Solution: Follows from the Lagrange interpolation formula in the points $0,1, \ldots d$.

$$
p(z)=\sum_{j=0}^{d} \frac{\prod_{i \neq j}(z-i)}{\prod_{i \neq q}(j-i)} .
$$

