Department of Mathematics University of California, Berkeley

Quantitative Reasoning Examination - Solutions

April 9, 2010

1

$$
\begin{gathered}
x^{2}\left(\frac{15 x}{7 y^{2}}\right)\left(\frac{49 y}{3 x^{3}}\right)=\frac{(15)(49)\left(x^{2}\right)(x)(y)}{(7)(3)\left(y^{2}\right)\left(x^{3}\right)}= \\
(5)(7) \frac{x^{3} y}{x^{3} y^{2}}=\frac{35}{y}
\end{gathered}
$$

If $a=-5$, then $|a+1|+|a-1|=|-5+1|+|-5-1|=|-4|+|-6|=4+6=10$

3

$f(x)=x^{2}-4$, so $f(3)=3^{2}-4=9-4=5$, and $f(f(3))=f(3)^{2}-4=5^{2}-4=25-4=21$.

4

We are given

$$
\begin{gathered}
2 x+3 y=6 \\
3 x+2 y=14
\end{gathered}
$$

Multiplying the first equation by 3 , the second by -2 and adding, we get $9 y-4 y=18-28$, giving $5 y=-10$, and $y=-2$.

5

The polynomial $f(x)=x^{2}-2 x-15$ factors as $f(x)=(x+3)(x-5)$ from which one sees that $f<0$ in the interval $(-3,5), f=0$ at -3 and 5 , and $f>0$ on $(-\infty,-3)$ and $(5, \infty)$. Of the five choices in the question, only one, the interval $(-4,-3)$ lies in the region where $f>0$.

6

An application of the Pythagorean theorem shows that the smaller square has side length $\sqrt{2}$, so that $S=2=\frac{1}{2}(4)=\frac{1}{2} L$, ie: $L=2 S$.

We use long division:

$$
x+2 \left\lvert\, \begin{array}{rrr}
x & -3 \\
\hline x^{2} & -x & -5 \\
x^{2} & +2 x & \\
\hline & \begin{array}{rr}
-3 x & -5 \\
-3 x & -6 \\
\hline &
\end{array}
\end{array}\right.
$$

The remainder is 1.

8

Recall that $\log _{y}(x)$ is the power to which you must raise y to get x. Since $3^{4}=81$, $\log _{3}(81)=4$.

9

$$
\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{(x+1)^{2}+(x-1)^{2}}{(x-1)(x+1)}=\frac{x^{2}+2 x+1+x^{2}-2 x+1}{x^{2}-1}=\frac{2 x^{2}+2}{x^{2}-1}
$$

10

$$
\left(\frac{3 a b^{2}}{c^{3}}\right)^{-4}=\left(\frac{c^{3}}{3 a b^{2}}\right)^{4}=\frac{c^{12}}{81 a^{4} b^{8}}
$$

11

30% of 15,000 equals $(.30)(15,000)=(30)(150)=4,500$. The new DUH tuition will be $15,000+4,500=19,500$ dollars per year.

12

By the quadratic formula, the roots of $x^{2}-8 x-1=0$ are

$$
\frac{8 \pm \sqrt{64+4}}{2}=4 \pm \sqrt{16+1}=4 \pm \sqrt{17}
$$

Hence $4-\sqrt{17}$ is a root.

13

The hypotenuse of the triangle has length $\sqrt{2^{2}+3^{2}}=\sqrt{13}$. The cosine of the angle in question equals the length of the adjacent leg divided by the length of the hypotenuse, hence equals $\frac{3}{\sqrt{13}}$.

14

If $\left(x_{\theta}, y_{\theta}\right)$ is the point on the unit circle corresponding to an angle of θ radians, then the point $\left(-x_{\theta},-y_{\theta}\right)$ corresponds to $\theta+\pi$ radians. We have $\cos (\theta)=x_{\theta}$, and $\cos (\theta+\pi)=-x_{\theta}$, giving $\cos (\theta+\pi)=-\cos (\theta)$.

15

We have $48=\log _{2}(x)+\log _{2}\left(x^{2}\right)+\log _{2}\left(x^{3}\right)=\log _{2}(x)+2 \log _{2}(x)+3 \log _{2}(x)=6 \log _{2}(x)$, so $\log _{2}(x)=\frac{48}{6}=8$, and $x=3$

16

The function $\sin (\theta)$ increases from 0 to 1 on the interval $\left[0, \frac{\pi}{2}\right]$. Thus $\sin \left(\frac{\pi}{3}\right)>\sin \left(\frac{\pi}{4}\right)$., i.e., (a) holds. (By the same token, (b) is false, and so is (d) because $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)$. The observation that $\cos \left(\frac{\pi}{2}\right)=0$ eliminates (c) and the observation that $\cos \left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{3}\right)$ eliminates (e).)

Alternatively, if one remembers the sine and/or cosine of the angles appearing in this question, one can read off the answer: $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \cos \left(\frac{\pi}{2}\right)=0, \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$, $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.

17

$$
\frac{\frac{x^{2}-y^{2}}{(x+y)^{2}}}{\frac{x+y}{(x-y)^{2}}}=\left(\frac{(x-y)(x+y)}{(x+y)^{2}}\right)\left(\frac{(x-y)^{2}}{x+y}\right)=\frac{(x-y)^{3}}{(x+y)^{2}}
$$

18

The line passes through $(0,4)$ and has slope $\frac{4-0}{0-3}=-\frac{4}{3}$. Hence its equation is $y=4-\frac{4}{3} x$, which can be rewritten as $\frac{x}{3}+\frac{y}{4}=1$.

19

The equation of the line is $y=2+5(x-1)$. For $x=0$, we get $y=2-5=-3$. For $y=0$, we get $x=-\frac{2}{5}+1=\frac{3}{5}$. The intersections with the coordinate axes occur at $\left(\frac{3}{5}, 0\right)$ and $(0,-3)$.

20

$$
\frac{x^{7 y+5}}{x^{5 y-7}}=x^{7 y+5-5 y+7}=x^{2 y+12} .
$$

