Bounds on self-dual codes and lattices

Abstract

A number of particularly interesting low-dimensional codes and lattices have the extra property of being equal to (or, for lattices, similar to) their duals; as a result, it is natural to wonder to what extent self-duality constrains the minimum distance of such a code or lattice. The first significant result in this direction was that of Mallows and Sloane, who showed that a doubly-even selfdual binary code of length n has minimum distance at most $4[n / 24]+4$, and with Odlyzko, obtained an analogous result for lattices. Without the extra evenness assumption, they obtained a much weaker bound; in fact, as I will show, this gap between singly-even and doubly-even codes is illusory: the bound $4[\mathrm{n} / 24]+4$ holds for essentially all self-dual binary codes. For asymptotic bounds, the best result for doubly-even binary codes is that of Krasikov and Litsyn, who showed $\mathrm{d}<=\mathrm{D} n+\mathrm{o}(\mathrm{n})$ where $\mathrm{D}=\left(1-5^{-1 / 4}\right) / 2$ 0.165629 . I'll discuss a different proof of their bound, applicable to other types of codes and lattices, in particular showing that for any positive constant c , there are only finitely many self-dual binary codes satisfying $d>=D n-c n^{1 / 2}$.

