LECTURE NOTES ON PARTIAL DIFFERENTIAL EQUATIONS
MATH 53, UC Berkeley

A partial differential equation (PDE) is an equation involving
an unknown function u of 2 or more variables and certain of its partial
derivatives.

EXAMPLES.

e Two dimensions. If u = u(z,y) is a function of two variables,
the following expressions are examples of PDE:
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e Three dimensions. If u = u(z,y,z) is a function of three
variables, the following expressions are PDE:
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e In these examples, (z,y) represents a point in the plane, and

(x,y, z) represents a point in space. Sometimes solutions u of
PDE depend also on the variable ¢ that denotes time.
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The order of a partial differential equation is the order of the highest
partial derivatives occurring in it.

EXAMPLES. The partial differential equations in (1) and (3) are
first-order PDE, and those in (2) and (4) are second-order. O

Many of the fundamental laws of the physical sciences are first- or
second-order PDE of various sorts, most of which are extremely difficult
to understand. In these notes we will consider some important model
PDE and discuss a few of their solutions.



THE WAVE EQUATION

The one-dimensional wave equation is the PDE
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for the unknown function of 2 variables u = u(x,t), where ¢ > 0 is
a constant. The physical interpretation is that w(x,t) represents the
displacement of a vibrating string at the time ¢ and at the point x along
the string.

The constant c¢ is the speed of propagation of disturbances moving
along the string. To see this, let us check that if ¢ is any function of a
single variable, then

(6) u(z,t) = g(x — ct)
solves the wave equation (5). Using the chain rule, we compute
0 0?
a—? = —cg'(x — ct), a—tz =c?¢"(x — ct)
and 5 o
u / u "
%:9(95—075)’ 92 =9 (x —ct).

Therefore u given by (6) does indeed solve the wave equation (5).

Note that since ¢ > 0, the expression (6) represents a traveling
wave solution which moves to the right (without changing the shape
of its profile) at speed c. Likewise
(7) u(z,t) = h(z + ct)

is a left moving traveling wave solution of (5).

It can be shown that every solution of the one-dimensional wave
equation has the form

u(z,t) = g(x — ct) + h(z + ct)

for appropriate functions of one variable g and h. This means that
every solution is a superposition of a right and of a left moving traveling
wave.



LAPLACE’S EQUATION

Laplace’s equation in two dimensions is the PDE
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for the unknown function of 2 variables u = u(z,y). There are several
physical interpretations of this PDE, one of which is that u represents
the equilibrium concentration at the point (z,y) in two dimensions of
some physical quantity.

e [t is not hard to show that various polynomials in 2 variables solve
Laplace’s equation, for example
u(z,y) = 2* — 9%, u(z,y) =2° — 3z9°,  u(z,y) = 2* — 62%y* +y*.
e As a more interesting example, let us check that
u(z,y) = log(z* + y*)

solves Laplace’s equation (except at the singular point (0,0)). We
compute
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for (x,y) # (0,0).
e We can show likewise that
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solves the three-dimensional Laplace equation
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for (z,y,2) # (0,0,0).

u(w,y,z) =

NOTATION: It is common in engineering and physics to write
Laplace’s equation as

V2u=0 or Au=0.
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Each of these expressions means the same as (8) (for functions of 2
variables) or (9) (for functions of 3 variables).

THE HEAT EQUATION

The one-dimensional heat equation (also known as the diffusion
equation) is the PDE
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for the unknown function of 2 variables u = wu(z,t), where o > 0
is a constant. The physical interpretation is that u represents the
temperature at time ¢ at the point x along a one dimensional rod, with
heat conductivity o. (Another interpretation is that u represents the
concentration at the point x at time ¢ of some chemical diffusing within
a one dimensional medium.)

(10)

e Let us show that for ¢ > 0 the function

1 2
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solves the heat equation (with o = 1, to simplify the calculations).

This is a good exercise using the chain rule. We have
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and so u given by (11) does indeed solve the heat equation (with o = 1)
where ¢ > 0.
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Bell shaped curves. If we multiply our solution (11) by an appro-
priate constant, we find that another solution is

22

e 4,

u(z,t) = -

(4rt)2
The graph of u at each time ¢ > 0 is a bell-shaped curve centered at
0, with area 1 under the curve. This is called a normal distribution
or Gaussian distribution, extremely important in probability and
statistics theory.

e Readers may wish to check that similarly
1 902+y2

(12) U’(Ivyat) = 4_7Tt€_ 4t

solves the heat equation
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which models diffusion in two spatial dimensions.
The graph of this function u at each time ¢ > 0 is a bell-shaped

surface centered at (0,0), with volume 1 under the surface. This is a
two dimensional normal distribution.



