
LECTURE NOTES ON PARTIAL DIFFERENTIAL EQUATIONS
MATH 53, UC Berkeley

A partial differential equation (PDE) is an equation involving
an unknown function u of 2 or more variables and certain of its partial
derivatives.

EXAMPLES.

• Two dimensions. If u = u(x, y) is a function of two variables,
the following expressions are examples of PDE:
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• Three dimensions. If u = u(x, y, z) is a function of three
variables, the following expressions are PDE:
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• In these examples, (x, y) represents a point in the plane, and
(x, y, z) represents a point in space. Sometimes solutions u of
PDE depend also on the variable t that denotes time.

�

The order of a partial differential equation is the order of the highest
partial derivatives occurring in it.

EXAMPLES. The partial differential equations in (1) and (3) are
first-order PDE, and those in (2) and (4) are second-order. �

Many of the fundamental laws of the physical sciences are first- or
second-order PDE of various sorts, most of which are extremely difficult
to understand. In these notes we will consider some important model
PDE and discuss a few of their solutions.
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THE WAVE EQUATION

The one-dimensional wave equation is the PDE
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for the unknown function of 2 variables u = u(x, t), where c > 0 is
a constant. The physical interpretation is that u(x, t) represents the
displacement of a vibrating string at the time t and at the point x along
the string.

The constant c is the speed of propagation of disturbances moving
along the string. To see this, let us check that if g is any function of a
single variable, then

(6) u(x, t) = g(x− ct)
solves the wave equation (5). Using the chain rule, we compute
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Therefore u given by (6) does indeed solve the wave equation (5).

Note that since c > 0, the expression (6) represents a traveling
wave solution which moves to the right (without changing the shape
of its profile) at speed c. Likewise

(7) u(x, t) = h(x+ ct)

is a left moving traveling wave solution of (5).

It can be shown that every solution of the one-dimensional wave
equation has the form

u(x, t) = g(x− ct) + h(x+ ct)

for appropriate functions of one variable g and h. This means that
every solution is a superposition of a right and of a left moving traveling
wave.
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LAPLACE’S EQUATION

Laplace’s equation in two dimensions is the PDE
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for the unknown function of 2 variables u = u(x, y). There are several
physical interpretations of this PDE, one of which is that u represents
the equilibrium concentration at the point (x, y) in two dimensions of
some physical quantity.

• It is not hard to show that various polynomials in 2 variables solve
Laplace’s equation, for example

u(x, y) = x2 − y2, u(x, y) = x3 − 3xy2, u(x, y) = x4 − 6x2y2 + y4.

• As a more interesting example, let us check that

u(x, y) = log(x2 + y2)

solves Laplace’s equation (except at the singular point (0, 0)). We
compute
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for (x, y) 6= (0, 0).
• We can show likewise that

u(x, y, z) =
1
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1
2

solves the three-dimensional Laplace equation
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for (x, y, z) 6= (0, 0, 0).

NOTATION: It is common in engineering and physics to write
Laplace’s equation as

∇2u = 0 or ∆u = 0.
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Each of these expressions means the same as (8) (for functions of 2
variables) or (9) (for functions of 3 variables).

THE HEAT EQUATION

The one-dimensional heat equation (also known as the diffusion
equation) is the PDE
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for the unknown function of 2 variables u = u(x, t), where σ > 0
is a constant. The physical interpretation is that u represents the
temperature at time t at the point x along a one dimensional rod, with
heat conductivity σ. (Another interpretation is that u represents the
concentration at the point x at time t of some chemical diffusing within
a one dimensional medium.)

• Let us show that for t > 0 the function

(11) u(x, t) =
1

t
1
2

e−
x2

4t

solves the heat equation (with σ = 1, to simplify the calculations).

This is a good exercise using the chain rule. We have
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We also compute that
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and so u given by (11) does indeed solve the heat equation (with σ = 1)
where t > 0.
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Bell shaped curves. If we multiply our solution (11) by an appro-
priate constant, we find that another solution is

u(x, t) =
1

(4πt)
1
2

e−
x2

4t .

The graph of u at each time t > 0 is a bell-shaped curve centered at
0, with area 1 under the curve. This is called a normal distribution
or Gaussian distribution, extremely important in probability and
statistics theory.

• Readers may wish to check that similarly
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solves the heat equation
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which models diffusion in two spatial dimensions.

The graph of this function u at each time t > 0 is a bell-shaped
surface centered at (0, 0), with volume 1 under the surface. This is a
two dimensional normal distribution.


