# UC Berkeley Math 10A, Fall 2014: Midterm 1 

Prof. Persson, October 8, 2014

Name:
SID:
Section: Circle your discussion section below:

| Sec | Time | Room | GSI | Grading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | TuTh 8-930am | 35 Evans | Noble Macfarlane | 1 | / 6 |
| 102 | TuTh 8-930am | 31 Evans | Kevin Donoghue |  |  |
| 103 | TuTh 11-1230pm | 45 Evans | Noble Macfarlane | 2 | / 6 |
| 104 | TuTh 11-1230pm | 41 Evans | Kevin Donoghue | 3 | / 5 |
| 105 | TuTh 1230-2pm | 61 Evans | James McIvor |  |  |
| 106 | TuTh 1230-2pm | 55 Evans | Adam Merberg | 4 | 15 |
| 107 | TuTh 2-330pm | 61 Evans | James McIvor | 5 | / 3 |
| 108 | TuTh 2-330pm | 55 Evans | Shamil Shakirov |  |  |
| 109 | TuTh 330-5pm | 39 Evans | Adam Merberg | 6 | / 4 |
| 110 | TuTh 330-5pm | 47 Evans | Markus Vasquez |  | /29 |
| 111 | TuTh 5-630pm | 47 Evans | Markus Vasquez |  |  |
| 112 | TuTh 5-630pm | 122 Latimer | Shamil Shakirov |  |  |

Other/none, explain: $\qquad$

## Instructions:

- Closed book: No notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

1. (6 points) Find each of the following limits.
a) $\lim _{x \rightarrow-\infty} \frac{x(3 x-4)+2}{5 x^{2}-10}$
b) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
c) $\lim _{x \rightarrow 1} \frac{\frac{1}{1+x^{4}}-\frac{1}{2}}{x-1}$
2. (6 points) Differentiate each function.
a) $f(x)=\left(2 x^{3}\right)^{4}$
b) $f(x)=\frac{1}{x}+x^{2} e^{x}$
c) $f(x)=\ln \left(\arctan \sqrt{\frac{x}{4}}\right)$
3. (5 points) Find the equation of the line tangent to the curve

$$
\sin (4 x+y)=2 x-2 y
$$

at the point $(\pi, \pi)$.
4. (5 points) Find the absolute minimum and absolute maximum of the function

$$
f(x)=x^{3}-3 x^{2}+1 \quad \text { on the interval } \quad-\frac{1}{2} \leq x \leq 4
$$

5. (3 points) Suppose that the point $(2,3)$ is on the graph of $y=g(x)$, and that the equation of the line tangent to the graph of $y=g(x)$ at this point is $y=-2 x+7$. If you wanted to find a solution to $g(x)=0$ by Newton's method and you used $x_{1}=2$ as your initial guess, what would $x_{2}$ be?
6. (4 points) Find the $n$th order Taylor polynomial of $f(x)=e^{2 x}$ at $x=a$, where $a$ is any real number. Write your answer using $\sum$ notation.
