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1. Introduction to Linear Systems

Introduction

A linear equation in n variables is an equation of the form

a1x1 + a2x2 + ...+ anxn = b,

where a1, a2, ..., an and b are real numbers (constants). Notice that a linear equation doesn’t
involve any roots, products, or powers greater than 1 of the variables, and that there are
no logarithmic, exponential, or trigonometric functions of the variables. Solving a linear
equation means finding numbers r1, r2, ..., rn such that the equation is satisfied when we
make the substitution x1 = r1, x2 = r2, . . . , xn = rn. In this course we will be concerned
with solving systems of linear equations, that is, finding a sequence of numbers r1, r2, . . . , rn
which simultaneously satisfy a given set of equations in n variables. No doubt you have
solved systems of equations before. In this course we will not only learn techniques for
solving more complicated systems, but we will also be concerning ourselves with important
properties of the solution sets of systems of equations.

Questions

1. (a) What does the graph of x+ 2y = 5 look like?

(b) What does the graph of 2x− 3y = −4 look like?

(c) Do the two graphs above intersect? If so, what does their intersection look like?

2. Write down a system of two linear equations in two unknowns which has no solution.
Draw a picture of the situation.

3. Suppose you have a system of two linear equations in three unknowns. If a solution
exists, how many are there? What might the set of solutions look like geometrically?

Problems

1. Solve the following system of equations and describe in words each step you use.

x + 3y − z = 1
3x + 4y − 4z = 7
3x + 6y + 2z = −3

How many solutions are there, and what does the solution set look like geometrically?
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2. Find all solutions of the system

x + y − 3z = −5
−5x − 2y + 3z = 7
3x + y − z = −3

Describe (but don’t draw) the graphs of each of the three above equations and their
intersection.

3. What condition on a, b, c, and d will guarantee that there will be exactly one solution
to the following system?

ax + by = 1
cx + dy = 0

4. Consider a system of four equations in three variables. Describe in geometric terms
conditions that would correspond to a solution set that

(a) is empty.

(b) contains a unique point.

(c) contains an infinite number of points.

Additional Problems

1. Set up a system of linear equations for the following problem and then solve it:

The three-digit number N is equal to 15 times the sum of its digits. If you reverse the
digits of N, the resulting number is larger by 396. Also, the units (ones) digit of N is
one more than the sum of the other two digits. Find N.

2. Consider the system of equations

ax + by = k
cx + dy = l
ex + fy = m

Show that if this system has a solution, then at least one equation can be thrown out
without altering the solution set.
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2. Matrices and Gaussian Elimination

Introduction

A linear system corresponds to an augmented matrix, and the operations we use on a linear
system to solve it correspond to the elementary row operations we use to change a matrix
into row echelon form. The process is called Gaussian elimination, and will come in handy
for the rest of the semester.

Questions

1. True or False: The augmented matrix for the system

2x1 − 3x2 + x3 − x4 = 4
3x1 + 2x2 + x3 − 3x4 = 1
5x1 + x2 − x3 + x4 = 3
2x1 − 5x2 + 4x3 − 6x4 = 6

is









2 −3 1 −1
3 2 1 −3
5 1 −1 1
2 −5 4 −6









.

2. (a) Identify the first pivot of the matrix









1 −1 2 1
−2 3 −5 0
−1 2 −1 0
1 0 −1 3









.

(b) If that pivot in part (a) was not in the first row, interchange rows so that it is.

(c) Now add suitable multiples of the first row to the other rows to make all other
entries in the first column zero.

(d) Ignoring the first row, find the next pivot and repeat steps (b) and (c) on the
second column.

(e) Continue until all of the rows that contain only zeros are at the bottom of the
matrix and each pivot appears to the right of all the pivots above it.

Problems

1. You and a friend rent a room in an old house and find that if both of you are using your
blow dryers, the 20 amp fuse for that circuit occasionally blows. Each blow dryer has
a high and a low power setting, which has the effect of fixing the electrical resistance.
The wire from the fuse box is as old as the house, and has an additional resistance
which newer wiring would minimize.
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Rw

iw

120V i1 i2

R1 R2

Equations for the current flowing through each element of the circuit are obtained from
Kirchhoff’s laws. The first equation states that the current flowing through the wire
goes into one or the other blow dryer, so that

iw = i1 + i2

where w refers to the wire, while 1 and 2 refer to the blow dryers. Two additional
equations result from the fact that for any loop of the circuit, the voltage dissipated
by resistors must equal the source voltage. Thus,

Rwiw +R1i1 = V

Rwiw +R2i2 = V

where Rw, R1 and R2 are the resistances and V is the line voltage (120 Volts).

(a) Write this system of three equations in matrix form AX = B, where X is a
column vector whose entries are the three unknown currents.

(b) Solve this matrix equation for the currents when both blow dryers are in use.
Consider three cases: both blow dryers operating at low power; both at high
power; and one on low and one on high. Let the two power settings be 1000W and
1500W, for which the associated resistances are 15Ω and 10Ω, respectively. (Note
that higher resistance reduces the power drawn by the dryer.) In all cases, let
the wire resistance be Rw = 0.5Ω. Can both blow dryers be used simultaneously
under any conditions? Under what conditions will the fuse blow?

2. Write down the augmented matrix for the given system of equations and then reduce
to row echelon form.

(a)

x1 + 2x2 − x4 = −1
−x1 − 3x2 + x3 + 2x4 = 3
x1 − x2 + 3x3 + x4 = 1
2x1 − 3x2 + 7x3 + 3x4 = 4

(b)

x1 + 2x2 − 3x3 = 9
2x1 − x2 + x3 = 0
3x1 − 2x2 + 4x3 = 0
4x1 − x2 + x3 = 4
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3. Solve the system in part (a) of problem 1.

4. Suppose you accept a software maintenance job in which you make $80 a day for each
day you show up to work, but are penalized $20 per day that you don’t go to work.
After 60 days you find you’ve earned $2200. How many days have you gone to work?
(Assume that you were expected to work during each of the 60 days.) You may wish
to set up a system of two linear equations and solve it.

5. Find a linear system in 3 variables, or show that none exists, which:

(a) has the unique solution x = 2, y = 3, z = 4.

(b) has infinitely many solutions, including x = 2, y = 3, z = 4.

6. As you know, two points determine a line. But what does this mean? The equation of
a line is ax + by + c = 0. Use a linear system to find an equation of the line through
the points (−1, 1) and (2, 0). Check your answer. How can two equations determine
the three unknowns a, b, and c?

Additional Problems

1. For which values of λ does the system

(λ− 3)x + y = 0
x + (λ− 3)y = 0

have more than one solution?

2. Suppose that the system

a11x1 + a12x2 + a13x3 = 0
a21x1 + a22x2 + a23x3 = 0
a31x1 + a32x2 + a33x3 = 0

has only x1 = x2 = x3 = 0 as a solution (the trivial solution). Then consider the
system obtained from the given system by replacing the three zeros on the right with
three 1’s.

(a) Must this new system have a solution or is it possible that the solution set of the
new system is empty?

(b) Might the new system have more than one solution?
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3. The Algebra of Matrices

Introduction

You’ve seen how matrices are used in solving systems of equations, and how elementary
row operations on a matrix can be useful. Multiplication of matrices is yet another tool for
solving systems of equations. With an operation such as multiplication, we can analyze how
certain matrices relate to each other, and how certain systems of equations can be simplified.

Questions

1. Answer the following with True or False. Explain your reasoning, or give a counterex-
ample.

(a) If A and B are any matrices, then A+ B is defined.

(b) If A and B are both n× n matrices, then A+ B = B + A.

(c) If A and B are both n× n matrices, then AB = BA.

2. Suppose that Math 54W is being taught by two different professors. Prof. A’s lecture
is more popular than Prof. B’s lecture. In fact, each week 90% of A’s students remain
in the lecture, while only 10% switch into B’s lecture. On the other hand, 20% of B’s
students switch into A’s lecture, with 80% remaining in B’s section.

This situation is described in the following table

from A from B
into A 90% 20%
into B 10% 80%

which can be represented by the matrix

[

.9 .2

.1 .8

]

. Supposing that at the start of the

semester each professor had 200 students, use matrix multiplication to answer the
following:

(a) How many students are there in each professor’s section after the 1’st week? (Hint:
represent the number of students in each section by a 2× 1 column matrix.)

(b) How many students are there in each professor’s section after the second week of
classes?
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Problems

1. (a) Write the following system as a matrix equation of the form AX = B.

6x + 5y + 2z = 11
5x + 4y + 2z = 7

−3x − 3y − z = 4

(b) Show that the same system of equations can also be written as a 1 × 3 matrix
times a 3× 3 matrix equaling a 1× 3 matrix.

2. Let A =





−2 1 −2
1 0 2
3 −3 1



, B =





−5 2
3 −1
−1 1



, and C =

[

−1 3
1 −2

]

.

Which of the following matrix multiplications are defined? Compute those which are
defined.

(a) AB (b) BC (c) CA (d) ABC

3. Let A and B be n× n matrices. Under what conditions is it true that

(A+ B)(A−B) = A2 −B2?

4. (a) What special properties does the matrix I =

[

1 0
0 1

]

possess?

(b) Given a 2× 2 matrix A, can you always find another matrix B so that AB=I?

(c) Given two 2×2 matrices A and B such that AB = I, is there anything noteworthy
about BA?

5. Compute

[

1 1
0 1

]n

. What is

[

1 1
0 1

]n [

1
1

]

?

6. Square matrices A and B are said to commute if AB = BA. Find all 2× 2 matrices
which commute with:

A =

[

1 0
0 0

]

; B =

[

0 1
0 0

]

; C =

[

0 −1
1 0

]

; D =

[

1 1
0 1

]

;

E =

[

2 0
0 2

]

; F =

[

2 0
0 5

]

; G =

[

2 3
0 5

]

.

What patterns do you notice? For some of these it might help to notice that if A
and B commute with M , then A + B also commutes with M . What matrix always
commutes with a square matrix M?
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Additional Problems

1. Suppose x is a real number satisfying x2 = 1. To solve for x, we factor x2 − 1 =
(x− 1)(x+ 1) = 0, and conclude that x = ±1. What if X is a 2× 2 matrix satisfying
X2 = I?

(a) Show that (X − I)(X + I) = 0.

(b) Are those the only solutions? What about

[

−1 0
0 1

]

and

[

1 0
0 −1

]

?

(c) Let a be any real number, and let A = ±
[

1 0
a −1

]

. Show that A2 = I.

(d) Let b be any real number, and let B =

[

b 1− b2

1 −b

]

. Show that B2 = I.

(e) Let 0 ≤ θ ≤ 2π, and let R =

[

cos θ − sin θ
− sin θ − cos θ

]

. Show that R2 = I.

(f) Explain why there can be so many solutions. Where does the analogy between x
and X break down?

2. Here is way to check your multiplication of an m× k matrix A with a k× n matrix B
to form the m× n product matrix C.

Make a new matrix A by adjoining to A an (m+ 1)th row that is the negative of the
sum of the first m rows. Then make a new matrix B by adjoining to B an (n + 1)th
column that is the negative of the sum of the first n columns. Now multiply to get
C = AB. Deletion of the last row and the last column of C leaves C = AB. Moreover,
the sum of the entries in any row or in any column of C should be 0; if it isn’t, there
is an error in that row or column.

3. Try this on a couple of examples. Explain why it works.
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4. Inverses and Elementary Matrices

Introduction

Finding the inverse of an invertible matrix is an important step in many problems in linear
algebra, but just knowing whether or not a particular matrix is invertible is by itself one of
our best tools. For example, if you know that A is an invertible n× n matrix, and B is any
n× 1 matrix, then the equation AX = B has a solution, namely X = A−1B.

Questions

1. Answer the following True or False. Justify your answer.

(a) If A and B are n × n matrices, and AB is not invertible, then either A is not
invertible, or B is not invertible.

(b) The diagonal matrix













2 0 0 0 0
0 −3 0 0 0
0 0 4 0 0
0 0 0 17 0
0 0 0 0 0













is invertible.

(c) If A and B are both invertible matrices, then A+ B is invertible.

2. Is









2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









an elementary matrix? Why or why not?

Problems

1. (a) Use elementary matrices to compute the inverse of





1 2 3
2 5 3
1 0 8



.

(b) Use part (a) to solve the system

x1 + 2x2 + 3x3 = 5
2x1 + 5x2 + 3x3 = 3
x1 + 8x3 = 17
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2. Without using pencil and paper, determine whether the following matrices are invert-
ible.

(a)









2 1 −3 1
0 5 4 3
0 0 1 2
0 0 0 3









(b)









5 1 4 1
0 0 2 −1
0 0 1 1
0 0 0 7









Hint: Consider the following associated systems

2x1 + x2 − 3x3 + x4 = 0
5x2 + 4x3 + 3x4 = 0

x3 + 2x4 = 0
3x4 = 0

and

5x1 + x2 + 4x3 + x4 = 0
2x3 − x4 = 0
x3 + x4 = 0

7x4 = 0

3. (a) Show that the equation AX = X can be rewritten as (A − I)X = 0, where A is
an n× n matrix, I is the n× n identity matrix, and X is an n× 1 matrix.

(b) Use part (a) to solve AX = X for X, where

A =





2 2 3
1 2 −1
2 −2 1



 and X =





x1

x2

x3





(c) Solve AX = 4X.

Additional Problems

1. Consider the following examples of matrix equations.

(a) Suppose A is a matrix satisfying A2 − 3A+ I = 0. Show that A−1 = 3I − A.

(b) Suppose A is a matrix satisfying A2 − 3A+ 4I = 0. Show that A−1 = 1
4
(3I −A).

(c) Suppose A is a matrix satisfying A2 − 3A = 0. Give an example of such an A
which is invertible, and an example of such an A which is not.

2. Let’s compute the inverse of the matrix

M =













0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0













.

(a) Let J be the 5× 5 matrix of all ones. Show that J2 = 5J .

(b) Notice that M = J − I.
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(c) Using 2a and 2b show that M2 − 3M − 4I = 0.

(d) Use Additional Problem 1 to compute M−1.

3. Let AX = 0 be a system of n linear equations in n unknowns, and let B be an invertible
n× n matrix. Show that the following two statements are equivalent.

(a) AX = 0 has only the trivial solution X = 0.

(b) (BA)X = 0 has only the trivial solution X = 0.

4. Prove: If A is invertible, then A + B and I + BA−1 are both invertible or both not
invertible.
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5. Transposes and Symmetry

Introduction

Symmetric matrices arise in many physical applications and have numerous nice properties.
We will see later that symmetric matrices can be “diagonalized”, a fact that is useful in
finding solutions to linear differential equations. The transpose AT of the matrix A is gotten
by flipping A so that the rows of A become the columns of AT , and the columns of A
become the rows of AT . The matrix A is called symmetric if it is equal to its transpose,
i.e., A = AT .

Questions

1. Let A =









2 0 1 −1
5 3 0 2
0 1 3 2
1 −1 −2 0









. What is AT ?

2. (a) Is the sum of symmetric matrices necessarily symmetric?

(b) Is the product of symmetric matrices necessarily symmetric?

(c) Is the inverse of an invertible symmetric matrix necessarily symmetric?

Problems

1. (a) Let A be a square matrix. Show that A + AT is symmetric. Why must A be
square?

(b) Let A be a matrix. Show that AAT and ATA are symmetric. Give an example
which shows that A need not be square.

2. If A is a square matrix and n is a positive integer, is it true that (An)T = (AT )n?

3. A permutation matrix is a square matrix with exactly one 1 in each row and exactly
one 1 in each column, and 0’s everywhere else. For example, ( 0 1

1 0 ) is a permutation
matrix, but ( 1 1

0 1 ) and ( 0 0
1 0 ) are not.

(a) List all the 3× 3 permutation matrices.

(b) Let A =





0 2 3
−1 −1 2
3 1 5



 . Find a permutation matrix P such that PA is the

result of interchanging the first two rows of A.
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(c) Find a permutation matrix P such that PA is the result of sending the first row
of A to the third row, the second row to the first, and the third row to the second.

(d) Pair up each 3× 3 permutation matrix with its inverse.

(e) What is the relationship between the 3 × 3 permutation matrices and their in-
verses?

(f) Generalize part (b) for any 4×4 permutation matrix P and its inverse, and check
your answer.

Additional Problems

1. Let Aθ =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



.

(a) What is (Aθ)
T ?

(b) For what values of θ is Aθ invertible? (Hint: How many solutions does the
equation AθX = 0 have?)

(c) Show that (Aθ)
−1 = (Aθ)

T .

2. A nice property that symmetric matrices possess is diagonalizability. I.e., given a
symmetric matrix A, there exists an invertible matrix S, and a diagonal matrix Λ (the
capital Greek letter “lambda”) so that

A = SΛS−1.

(a) Find a simple formula for An.

(b) Why does this formula simplify the computation of An?

3. Professors A and B teach different 54W lectures at Telebears University. At Telebears
U. students switch classes as late into the semester as they please. Suppose A and B
are equally popular. In fact, every week 75% remain in each professor’s class, while
25% switch out to the other’s lecture. This situation can be represented by the matrix

M =

(

3
4

1
4

1
4

3
4

)

.

(a) Show that M is diagonalizable. (Hint: Show that

M =

(

1
2

1
2

−1
2

1
2

)(

1
2

0
0 1

)(

1 −1
1 1

)

.)

In Hill §5.3 you will learn a method which will let you do this problem without
the hint.
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(b) Find a simple formula for Mn. Compute the limit limn→∞Mn. (Hint: Look at
Additional Problem 2.)

(c) Suppose that at the beginning of the semester, A had 384 students, and B had
128 students. After 5 weeks, how many students will each professor have?

(d) Intuitively, how many students will be in each lecture at finals time (say 16 weeks
after the start of the semester)? Is your intuition supported mathematically?
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6. Vectors

Introduction

The idea of using ordered triples of numbers to represent points in 3-dimensional space can
be extended to larger dimensions. It may be hard to visualize dimensions higher than 3, but
we can still carry over many analytical properties of points and vectors. The usual notions
of distance and angle, for example, have n-dimensional versions for any positive integer n.

Questions

1. (a) Given a vector v in R2, what is meant by Span{v}?
(b) Given two vectors u and v in R2, what is meant by Span{u,v}?
(c) If u and v are two vectors in R2, under what conditions is Span{u,v} all of R2?

2. If u, v, andw are three vectors inR3, describe in geometric terms all of the possibilities
for Span{u,v,w}.

3. (a) If v = (−1, 3, 2), then ‖v‖ = .

(b) If x = (x1, x2, . . . , xn), then ‖x‖ = .

(c) True or False: If u · v = u ·w, then v = w.

Problems

1. (a) Express the vector (3, 5) as a linear combination of the vectors (1, 0) and (0, 1).
How many ways can this be done?

(b) Is it possible to express the vector (3, 5,−2) as a linear combination of the vectors
(1, 0,−1) and (0, 1, 1)? In how many ways?

(c) Which vectors (x1, x2, x3) in R3 can be expressed as a linear combination of the
vectors (1, 0,−1), (0, 1, 1), and (2, 2, 0)? Give both an algebraic and a geometric
answer.

2. If u and v are vectors in R3, and r and s are any real numbers, show that

(a) (r + s)u = ru+ su.

(b) r(u+ v) = ru+ rv.

3. Show that A = (2,−1, 1), B = (3, 2,−1), and C = (7, 0,−2) are vertices of a right
triangle. At which vertex is the right angle?
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4. If u = (u1, u2, . . . , un) is a vector in Rn, show that ‖u‖ =
√
u · u = d(u,0)

5. (a) Let L be the x-axis, i.e., L = Span{(1, 0)}. Using Calculus, verify that the point
of L closest to the point P = (3, 5) is just the projection of P onto (1, 0).

(b) Now let L be the line spanned by (1,−1, 3, 5) in R4. Find the point of L closest
to P = (−24, 5,−16, 1).

6. Establish the identity

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

for vectors in R2. Does the formula hold in Rn? Label the parallelogram below with
the missing vectors. Based on this picture, can you explain the identity geometrically?

Additional Problems

1. Let u and v be vectors in R3, and let k = ‖u‖ and l = ‖v‖. Show that the vector

w = lu+ kv

bisects the angle between u and v.

2. Let u, v, and w be vectors in Rn. Show that if u is perpendicular to both v and
w, then u is perpendicular to 2v + 3w. Is it perpendicular to k1v + k2w for all real
numbers k1 and k2? Explain what is going on geometrically in R3.
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7. General Vector Spaces

Introduction

So far we have extended many of the properties of R2 and R3 to Rn. We don’t have to
stop there. By taking the most fundamental properties of these “natural” sets of vectors, we
can define a general vector space. Any set of objects equipped with an addition and scalar
multiplication which satisfies the eight vector space axioms qualifies as a vector space.

Questions

1. (a) Explain what it means for a set V to be closed under addition.

(b) What does it mean for V to be closed under scalar multiplication?

2. For each of the following shaded regions, determine whether it is closed under addition,
scalar multiplication, both, or neither.

(a) (b) (c)

(d) (e)

3. Determine if V is closed under addition, scalar multiplication, both, or neither.

(a) V = { odd integers }
(b) V = {( a b

c d ) : a, b, c, d are negative }
(c) V = {( a b

c d ) : (
a b
c d ) is nonsingular }

(d) V = {f ∈ C[1, 2] : f(x) ≥ 0 for all x ∈ [1, 2]}

4. What special properties does the zero vector of a vector space have? Are there other
vectors with these same properties? You should try to prove your answer.
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Problems

1. Let V be the set of all solutions to the differential equation y′′ − 4y′ = 0.

(a) Is 0 in V ?

(b) If y is a solution to the differential equation, is 2y also a solution?

(c) If y1 and y2 are solutions, is 2y1 + 3y2 also a solution?

(d) Verify that V is a vector space.

2. Let V be the set of all functions representable by a Maclaurin series convergent on
(−1, 1), with addition and scalar multiplication defined as follows. If f(x) =

∑∞
n=0 anx

n

and g(x) =
∑∞

n=0 bnx
n, then

f + g =
∑∞

n=0(an + bn)x
n and cf =

∑∞
n=0 canx

n.

(a) Is f(x) = 1
1−x

= 1 + x+ x2 + . . . in V ?

(b) Is g(x) = 1
1−2x

= 1 + 2x+ 4x2 + . . . in V ?

(c) Is V closed under addition and scalar multiplication?

(d) Is V a vector space?

3. Let V be the set of all 2 × 2 matrices in which each of the entries is a polynomial
of degree less than 2, with the usual matrix addition and scalar multiplication. For

example, the matrix
(

x x2−5x
−3 3x2+1

)

is a vector in V .

(a) If V is a vector space, what is the zero vector?

(b) Is V a vector space?

Additional Problems

1. Let V be the set of all 3×3 matrices, and suppose that the “sum” of two such matrices
M and N is defined to be M⊕N = MN (the usual matrix product). Does V with this
definition of addition and the usual definition of scalar multiplication form a vector
space? If not, which properties fail?

2. Let V be a vector space, and suppose that L and M are two subsets of V which just
happen to also be vector spaces. Is it true that L ∪M is a vector space? How about
L ∩M? Why?
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8. Subspaces, Span, and Nullspaces

Introduction

A subspace of a vector space is a subset which is also a vector space. Fortunately, we don’t
have to check all eight vector space axioms to determine if a subset of a vector space is
a subspace. Since most of the properties of the vector space automatically hold in any
nonempty subset, there are only two axioms that need to be checked. Subspaces turn out
to be very useful in analyzing linear systems of equations.

Questions

1. (a) If S is a nonempty subset of a vector space V , what are the two necessary and
sufficient conditions for S to be a subspace of V ?

(b) If S is a nonempty subset of a vector space, and S satisfies the two conditions in
(a), how do you know that S contains the zero vector?

(c) If S is a nonempty subset of a vector space V , and S satisfies the two conditions
in (a), and v ∈ S, how do you know that −v ∈ S?

(d) Suppose S is empty. Does S still satisfy the two conditions in (a)? If so, why
isn’t S a subspace of V ?

2. (a) Let V be a vector space. Is V a subspace of itself?

(b) If 0 is the zero vector in V , is the set {0} a subspace of V ?

3. True or False: If w ∈ Span{v1,v2,v3,v4}, then w can be written as a linear combi-
nation of v1,v2,v3,v4 in only one way.

4. Which regions in Question 2 of Worksheet 6 are subspaces of R2?

5. Suppose that {v1, . . . ,vn} spans the vector space V , and for each i, that vi lies in
span{w1, . . . ,wm}. Show that {w1, . . . ,wm} spans V .

Note: This can be a very useful tool! Suppose you want to know if the space spanned
by {v1, . . .vn} is the same as the space spanned by {w1, . . .wm}. If you can show that
each vi is in span{w1, . . . ,wm} and each wi is in span{v1, . . . ,vn}, then the spans
must be the same. Make sure you understand this concept before moving on.
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Problems

1. Let V be the vector space of all 2× 2 matrices, and let

S = Span

{[

1 0
0 1

]

,

[

0 −1
1 0

]}

.

(a) Is

[

0 0
0 0

]

in S?

(b) Is

[

2 0
0 1

]

in S?

(c) Is S a subspace of V ?

(d) What does a typical vector in S look like?

2. Let A =

[

0 1 0
0 0 0

]

. Show that the set NS(A) of all vectors x =





x1

x2

x3



 such that

Ax = 0 is a subspace of R3.

3. (a) Describe the span of p(x) = 2x2 − 5x and q(x) = 2x− 5 in P2.

(b) Describe the span of f(x) = sin2 x and g(x) = cos2 x in C(−∞,∞) (the vector
space of functions which are continuous on the entire real line).

4. Each null space in the first column corresponds uniquely to which span in the second
column? Justify.

nullspace of . . . span of . . .

[

1 2 3
4 5 6

]













1
−1
0
2
1













,













0
1
1
−2
−1













,













1
0
1
0
0

















0 1 0 0 1
0 2 0 1 0
1 0 −1 0 −1









0
0
0









2 1 0
1 0 −1
0 0 1









0
0
0



 ,





1
−2
1
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Additional Problems

1. (a) Let L and M be subspaces of a vector space V . Are the following sets also
subspaces of V ?

i. L ∪M = {all vectors belonging to L or M or both}
ii. L ∩M = {all vectors belonging to both L and M}

iii. L+M =

{

all vectors w that can be written as a sum
of a vector x in L and a vector y in M

}

(b) Let L = {(x1, x2, x3)|x1 + x2 + x3 = 0} and let M = {(x1, x2, x3)|x1 = x2 = x3}.
Both are subspaces of R3. Give geometric descriptions of L and M ; then describe
the sets L ∪M , L ∩M , and L+M .

2. Define the differential operator D = d2

dx2 + 1 by the rule:

D(f) =

(

d2

dx2
+ 1

)

f =
d2f

dx2
+ 1 · f.

To make this rigorous, one should think of D as a function whose domain and range
is the vector space A of all functions which possess MacLaurin series which converge
on R. As with matrices, one can define the null space of D by

NS(D) = {f ∈ A : D(f) = 0}.

(a) Show that NS(D) is a subspace of A.

(b) Find NS(D). (Hint: Solve a differential equation.)
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9. Linear Independence

Introduction

At this point, you probably understand intuitively what is meant by “dimension” in Rn. In-
tuitively R2 is two dimensional and R3 is three dimensional. Before we can define dimension
formally, we need to understand certain sets of vectors a little better. Before beginning this
worksheet, make sure you know the definitions of linear dependence and linear independence.

Questions

1. Can the polynomial x2 + 3x+ 2 be written as a linear combination of x2 + x and 3x?
Explain.

2. By inspection, determine whether the polynomials x3 + 2 and 3x3 + 6 are linearly
independent in P3.

3. In general, how can you tell if a set with two vectors is linearly independent?

4. True or False: If the set of vectors S = {v1, ...,vk} is linearly independent, then

c1v1 + ...+ ckvk 6= 0

for all numbers c1, ..., ck.

Problems

1. (a) Show that the vectors v1 = (1, 0, 2), v2 = (0, 1, 2), and v3 = (0, 3, 0) are linearly
independent in R3.

(b) What is the span of {v1,v2,v3}?
(c) Can you find another linearly independent set of vectors in R3 with the same

span as the set {v1,v2,v3}? (Make sure your vectors are not scalar multiples of
v1, v2, and v3.) Prove that your set has the same span as {v1,v2,v3}.

2. Are the vectors
v1 = (1, 1, 2, 4), v2 = (2,−1,−5, 2),

v3 = (1,−1,−4, 0), v4 = (2, 1, 1, 6)

linearly independent in R4?

3. Is the set {sin x, x} linearly independent in C[0, 1]? How about {sin 2x, cos x · sin x}?
Justify.
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4. Show that {x3 + x+ 1, 2x3 + x+ 1, x3 + 3x+ 1, x3 + x+ 4} is a linearly dependent set
in P3. (Hint: Find a 3 dimensional subspace that they all lie in.)

5. (a) Show that any two vectors chosen from a linearly independent set are linearly
independent.

(b) Show that a set which contains two linearly dependent vectors must be a linearly
dependent set.

(c) Find three vectors in R3 which are linearly dependent, and such that any two of
them are linearly independent.

Additional Problems

1. Suppose that S = {v1, . . . , vk} and T = {w1, . . . , wℓ} are subsets of a vector space V .
Furthermore, S and T are each linearly independent sets, and

Span(S) ∩ Span(T ) = {0}.

Show that S ∪ T is a linearly independent set.

2. Let W be a subspace of Rn, and let {w1, . . . ,wk} be a linearly independent subset of
W .

(a) Suppose that {w1, . . . ,wk,w} is linearly dependent for each w in W . Show that
{w1, . . . ,wk} is a basis for W .

(b) Suppose moreover that {w1, . . . ,wk,v} is linearly dependent for each v in Rn.
Show that k = n.

3. Let A =

[

a b
c d

]

.

(a) Show that the vectors I, A,A2 are linearly dependent in M2,2. (Hint: Write A2 as
a linear combination of I and A.)

(b) Deduce that An is in Span{I, A} for all non-negative integers n. Show that if A
is invertible, then An is an Span{I, A} even if n is a negative integer.
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10. Basis and Dimension

Introduction

A subset S of a vector space V is said to span V if Span(S) = V . If S spans V , and in
addition, S is linearly independent, then S is called a basis for V . With this in mind, we
are ready for a rigorous analog to the intuitive idea of dimension. The dimension of a vector
space V is n (a nonnegative integer) if V has a basis consisting of n vectors. Although
a vector space can have many bases, they all have the same number of elements, so that
dimension is a well defined notion.

Questions

1. (a) What is the standard basis for P3, the vector space of all polynomials of degree 3
or less?

(b) Find another basis for P3.

2. If V is a vector space and S = {v1,v2,v3} is a basis for V , can we find another basis
for V with four vectors?

3. Answer the following True or False. Justify your answers.

(a) dimP5 = 5.

(b) C[0, 1] is infinite dimensional. (Hint: See Theorem 3.58, page 191 of Hill.)

(c) If W is a subspace of V , and S is a basis for W , then we can add vectors to S to
form a basis for V .

(d) If W is a subspace of V , and S is a basis for V , then some subset of S is a basis
for W .

Problems

1. Let V = C[−∞,∞] be the space of continuous functions f : R1 → R1.

(a) Let W be the subspace spanned by sin2 x, cos2 x, sin 2x, and cos 2x. What is
dimW?

(b) Show that C[−∞,∞] is infinite dimensional. (Hint: For any n, find n linearly
independent vectors. Why does this prove it?)

2. Let W = {(x1, x2, x3)|x1 + x2 + x3 = 0}.
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(a) Find a matrix A such that NS(A) = W . [Hint: NS(A) is the null space of A.]

(b) Use part (a) to find a basis for W and determine its dimension.

3. Let V be the vector space consisting of all polynomials p(x) of degree 3 or less, satisfying
p(1) = 0. What is dimV ? Give a basis for V .

4. (a) Find a basis for the vector space of all 3× 3 matrices. What’s the dimension?

(b) Find a basis for the vector space of all 3 × 3 symmetric matrices. What is the
dimension of this vector space?

(c) What is the dimension of Mn,n? What is the dimension of the subspace of Mn,n

consisting of all symmetric matrices?

Additional Problems

1. Let p1(x) =
1
2
x(x− 1), p2(x) = −x2 + 1, and p3(x) =

1
2
x(x+ 1).

(a) Show that {p1, p2, p3} is linearly independent in P2, and hence forms a basis. Why
don’t you have to show that the vectors span P2?

(b) Let q(x) = c1p1(x) + c2p2(x) + c3p3(x). Find:

i. q(−1)

ii. q(0)

iii. q(1)

(c) Let r(x) = 2x2 − 3x+7. Use part (b) to write r(x) as a linear combination of p1,
p2, and p3.

2. Let V = P5, the vector space of polynomials of degree 5 or less. Let W be the set of
polynomials from V which are even functions. Is W a subspace of V ? If so, find a
basis for W .

3. What is the dimension of the space of all functions which are solutions to the differential
equation

y(n) + cn−1y
(n−1) + · · ·+ c1y

′ + c0y = 0.

Justify.
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11. Fundamental Subspaces and Rank

Introduction

There are three vector spaces associated to every matrix: the row space, column space, and
null space. We have already seen that the null space of a matrix A is the set of solutions to
the equation Ax = 0. The dimensions of these vector spaces are related, and this provides us
with a very useful relationship between the size of the solution set of a system of equations
and the size of its coefficient matrix.

Questions

1. Let A be an m × n matrix. Review the definitions of RS(A), NS(A), and CS(A).
Which ones are subspaces of Rn? Are any of them subspaces of Rm?

2. Let A be an m × n matrix and let U be an m × n matrix in row echelon form which
is obtained from A by row operations.

Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) RS(A) = RS(U)

(b) CS(A) = CS(U)

(c) dimRS(A) = dimRS(U)

(d) dimCS(A) = dimCS(U)

(e) dimRS(A) = dimCS(A)

3. Suppose A is an invertible n× n matrix.

(a) What is rk(A)?

(b) What is dimNS(A)? [Hint: NS(A) is the null space of A.]

4. Show that if A is not square, then either the rows of A or the columns of A are linearly
dependent.

Problems

1. Consider the linear transformation B : R3 → R2 with coordinate matrix

B =

[

2 1 −1
−4 −2 2

]

.
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(a) Carefully sketch the null space of B. (Of what vector space is it a subspace?)

(b) Carefully sketch the column space of B. (Of what vector space is it a subspace?)

2. Let A =





0 1 0
1 0 0
0 0 0



.

(a) Show that the null space of A is the z-axis and the column space of A is the
xy-plane.

(b) Find a 3× 3 matrix whose null space is the x-axis and whose column space is the
yz-plane.

(c) Find a matrix whose row space is spanned by (1, 0, 1) and (0, 1, 0) and whose null
space is the span of (1, 0,−1).

3. Find a basis for the subspace W of R4 spanned by

v1 =









1
−2
0
4









, v2 =









−1
3
2
1









, and v3 =









0
3
6
15









.

Hint: Form the 3× 4 matrix A with v1, v2, and v3 as its rows.

What is dimW?

4. Let A be a 4× 5 matrix, and let b be a vector in R4.

(a) What does it mean for the equation Ax = b to have a solution?

(b) Show that Ax = b has a solution if and only if b is in CS(A).

5. Let A be the matrix formed by taking n vectors from Rm as its columns. Consider
the possible relationships between m and n: m ≤ n, n ≤ m, or m = n. In each of the
following situations, what is the relationship between m and n?

(a) The n vectors are linearly independent.

(b) The n vectors span Rm.

(c) The n vectors form a basis for Rm.

(d) A has rank m.

(e) A is invertible.

6. Find the rank of the following matrices (it may depend on t):

(a)





1 1 t
1 t 1
t 1 1



; (b)





t −1 2
t t 1
t t t



.

7. Let A be an n×m matrix. Show that if the rank of A is 1 then A must be of the form
uvT , where u is a column vector in Rm and v is a column vector in Rn.
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Additional Problems

1. (a) Suppose the u is a non-zero m×1 matrix, and v is a non-zero 1×n matrix. Show
that A = uv is an m× n matrix of rank 1.

(b) Show that the converse is true also. That is, suppose that A is an m× n matrix
of rank 1. Show that there is a column matrix u and a row matrix v so that
A = uv.
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12. Error Correcting Codes

Introduction

Have you ever wondered how the Mars Rover could
transmit information with high precision across the
vast reaches of space? Error correcting codes are one
of the key tools used in transmitting information accu-
rately, and many of them are based on linear algebra.
In this problem we will explore the Hamming code.

A digital message can be considered as a list of 0’s
and 1’s. Such a list reminds us of vectors, and we are
thus led to define a vector space, which we call Zn

2 ,
consisting of column vectors having n entries, each of
which is either 0 or 1. Vectors are added component-
wise using the rules:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

In particular, note that 1 + 1 = 0, not 2 as usual. (This new addition is like the “exclusive
or” in computer science.) Multiplication is as usual:

0× 0 = 0, 0× 1 = 1× 0 = 0, 1× 1 = 1.

Note that numbers like “2” and “-1” never come up.

Questions

Compute each of the following sums

1.





1
1
0



+





0
1
0



 =







 ,









1
0
1
0









+









0
0
1
1









=

















,









1
1
1
0









+









1
1
1
0









=

















Note that adding a vector to itself always yields the zero vector.

Carrying the analogy further, we define matrices with entries 0 or 1. We can multiply
them to obtain matrices whose entries are all 0 or 1. Compute the following products
(keeping in mind that 1 + 1 = 0, and that your answers should be matrices of 0’s and 1’s).

2.

[

1 1
1 1

] [

1 1
1 1

]

=

[ ]

,





1 1 1
1 0 0
0 1 1









1
1
0



 =







 .
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Most of the usual notions and theorems from linear algebra carry over to this new context.
For example, let W be the subspace of Z3

2 spanned by the two vectors





1
0
1



 and





0
1
1



 .

3. W consists of exactly 4 vectors, list them.

Problems

Next let V be the subspace of Z7
2 spanned by

u1 =





















1
0
0
0
0
1
1





















, u2 =





















0
1
0
0
1
0
1





















, u3 =





















0
0
1
0
1
1
0





















, u4 =





















0
0
0
1
1
1
1





















.

1. Show that u1, . . . ,u4 are linearly independent.

2. Describe how you could list the 16 vectors in V . (Don’t actually list them.)

3. Let H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



. (If you know about binary numbers note that the

columns of H represent 1 through 7.) Show that V is the null space of H. [Hint: The
usual theorems of linear algebra still apply. Thus it suffices to show that the null space
of H contains V , has dimension four, and then apply problem 4 above.]

A message can be encoded as a sequence of 1’s and 0’s. By breaking the message up
into blocks of four “bits”, we see that it is enough to encode and decode blocks of length
four. Such a block can be encoded as an element of V by taking the corresponding linear

combination of u1,u2,u3,u4. Thus the four-bit message 0-1-1-1 is encoded as

u2 + u3 + u4 =





















0
1
1
1
1
0
0





















and 1-0-0-1 is encoded as u1 + u4.
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4. What is 1-0-1-0 encoded as? What about 1-1-0-1?

5. Given a vector which encodes a four digit message, how can you recover the message?

You can often understand speech even when you can’t hear every word. This is partially
because human language has built in redundancy. Error correcting codes are based on this
principle.

To send a message first encode it as a vector v ∈ V and send v. (Note that 7 digits
must be sent instead of 4, there’s the redundancy.) If all goes well v is received and the
receiver recovers the message as the first four digits of v. If exactly one digit is “garbled”
(i.e., an error occurs), so that some vector w is received instead, then v can still be recovered
because it is the only vector in V which can have one digit changed to give w. (This is a
special “redundancy” property of V which won’t be explained here.) There is an algorithm
for finding out which digit was garbled:

Decoding a message which contains an error:

Assume that v was sent, w was received, and exactly one error occured. The
vector Hw must be a column of H, say the ith (indeed, every nonzero vector is
a column of H). Then the ith entry of v was transmitted incorrectly. Change
the ith entry of w to recover v.

6. In each case, determine the four bits which were sent (assume that at most one digit
was garbled):





















1
0
0
0
0
1
1





















,





















0
0
0
0
1
1
0





















7. Pick a vector v ∈ V , change one of its digits, and have another member of your group
determine which digit you changed.
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13. Linear Transformations

Introduction

After developing the theory of abstract vector spaces, it is natural to consider functions which
are defined on vector spaces that in some way “preserve” the structure. These functions are
called linear transformations, and they come up in both pure and applied mathematics. In
calculus, the derivative and the definite integral are two of the most important examples of
linear transformations. These examples allow us to reformulate many problems in differential
and integral equations in terms of linear transformations on particular vector spaces.

Questions

1. Find the function f(x1, x2) induced by the matrix

[ √
2
2

−
√
2
2√

2
2

√
2
2

]

.

2. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) The function T (x, y) = (x2, y) is a linear transformation from R2 to R2.

(b) The function T : R2 −→ R2 which rotates the xy-plane 20◦ is a linear transfor-
mation.

(c) The function fA : R3 −→ R3 induced by

A =





−1 0 0

0
√
2
2

−
√
2
2

0
√
2
2

√
2
2





rotates the yz-plane 45◦ and reflects the x-axis.

3. Let A =

[

1 4
0 1

]

.

Describe geometrically what the induced function fA does to the x-axis and y-axis.

Problem

1. Let V = C[0, 1] and let T : V −→ R be defined by T (f) =
∫ 1

0
f(x) dx. Show that T

is a linear transformation.

2. Consider the function d
dx

from Pn to Pn−1.

(a) Show that d
dx

is a linear transformation.
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(b) Write the matrix of the transformation in terms of the standard basis for Pn.

(c) What is the null space of d
dx
? What is the image (i.e. the column space) of d

dx
?

3. Let A be a fixed 2 × 3 matrix, and let X be a 2 × 2 matrix. Define the function
T : M22 −→ M23 by T (X) = XA. Is T linear? Explain.

4. Let S = {1, x, x2} be the standard basis for P2, and suppose that T : P2 −→ P2 is a
linear transformation such that T (1) = 3x− 5, T (x) = x2 + 1, and T (x2) = 3.

(a) What is T (2x2 + 1)?

(b) What is T (a0 + a1x+ a2x
2)?

(c) Find a matrix which induces T .

Hint: Think of 1 the vector (1, 0, 0), x as (0, 1, 0), etc.

5. Show that if T : V −→ W is a linear transformation, then T (u − v) = T (u) − T (v)
for all vectors u and v in V .

6. Let A =

[

2 0
0 1

]

and B =

[

1 2 0
0 −1 1

]

.

(a) What are the induced functions fA(x, y) and fB(x, y, z)?

(b) What is fA(fB(x, y, z))?

(c) Is the composition fA ◦fB a linear transformation? Why or why not? If it is, find
a matrix which induces fA ◦ fB.

(d) Is there a linear transformation fB ◦ fA?

Additional Problems

1. A linear transformation T : V → W is said to be 1-1 (one-to-one) if, whenever
x1 6= x2, T (x1) 6= T (x2). Prove the following:

(a) The transformation which rotates the xy-plane by an angle of 90◦ is 1-1.

(b) If T is 1-1, the null space of the matrix representation of T consists of 0 alone.

(c) If the null space of the matrix representation of T consists of 0 alone, then T is
1-1.

(d) If T is 1-1, then dimW ≥ dimV .

2. A linear transformation T : V → W is said to be onto if for any vector y in W there
is a vector x in V so that T (x) = y. Prove the following:

(a) The transformation which rotates the xy-plane by an angle of 90◦ is onto.

(b) If T is onto, the column space of the matrix representation of T has dimension
equal to dimW .
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(c) If T is onto, then dimV ≥ dimW .

3. A linear transformation T : V → W is said to be an isomorphism if it is invertible.
I.e., there is a linear transformation S : W → V such that for all x in V , S(T (x)) = x,
and for all y in W , T (S(y)) = y.

(a) For each of the following matrices, decide if the induced linear transformation is
an isomorphism:

i.





2 3
1 0
0 1





ii.





3 0 2
11 −8 26
−1 −2 4





iii.

[

1 1
−1 1

]

(b) Show that if T is an isomorphism, then it is 1-1 and onto.

(c) Show that T is an isomorphism if and only if its matrix representation is invertible.

(d) Prove the converse of (b). I.e., if T is 1-1 and onto, then T is an isomorphism.

4. If A is an m × n matrix, show that the dimension of the solution space of Ax = 0 is
at least n−m.
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14. Inner Products and Least Squares

Introduction

A vector space which is equipped with an inner product is called an inner product space. By
generalizing the notion of a dot product, we are able to define useful notions of length, angle
and distance in general vector spaces. Two important relationships involving inner products
are the Cauchy-Schwartz inequality and the triangle inequality.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) If x and y are vectors in R4 such that x · y = 0, then either x = 0 or y = 0.

(b) If u 6= 0 is a nonzero vector in Rn then the vector u

||u|| has norm 1.

(c) If A is a 3× 3 matrix, and x and y are column vectors in R3, then

Ax · y = x · Ay.

(d) If A is an m× n matrix, the equation Ax = y has a solution if and only if y is in
the column space of A.

(e) If A is an m × n matrix whose columns are linearly independent, then ATA is
invertible.

Problems

1. Let

u =





1
0
−2



 , v =





1
1
1



 , and w =





0
2
−1



 .

(a) Compute ‖u+ v‖ and ‖u‖+ ‖v‖. Which is larger?

(b) Compute |v ·w| and ‖v‖ ‖w‖. Which is larger?

(c) Compute uTv, vTu, and u · v. Is vuT defined? If so, compute it. If not, explain.

2. Does the formula p(x) · q(x) = p(0)q(0) define an inner product on P2?

3. Let f · g =
∫ 1

0
f(x)g(x) dx for functions f, g ∈ C[0, 1].

(a) What is ‖ sin πx‖ in this inner product space?
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(b) As in Rn, the distance between two vectors u and v in an inner product space is
‖u− v‖. Compute the distance between the functions x+ 1 and ex in this inner
product space.

(c) Show that the functions sin 2πx and cos 2πx are orthogonal (perpendicular) in
this inner product space.

4. Find the equation of the line y = mx+ b that best fits the points (−1,−1), (1, 0), and
(2, 4) in the least-squares sense by following these steps:

(a) Write down the (inconsistent) system of three equations in two unknowns for this
problem.

(b) Rewrite the system as a matrix equation Ax = y, where x =

[

m
b

]

. What are

A and y?

(c) Find AT and form the equation ATAx = ATy.

(d) Since the columns of A are linearly independent, ATA is invertible (see Question 1e
above). Find (ATA)−1 and use it to solve the equation in part (c).

(e) What is the equation of the line that best fits the given points?

5. Let W be a subspace of Rn. Define the orthogonal complement of W to be the
subspace

W⊥ = {v ∈ Rn : w · v = 0 for all w ∈ W }.

(a) Consider the subspace W = span{(1, 1, 1), (2, 0,−1)} of R3. Find a vector which
spans W⊥.

(b) Express the vector (2, 1,−3) in the form w +w⊥, where w ∈ W and w⊥ ∈ W⊥.

Additional Problems

1. The A.S.U.C. store is trying to decide at what price it should sell bananas.

Manager G. Bears notices the following obvious pattern: in general, the higher the
price of bananas, the less bananas are sold. Manager Bears wants to maximize profits
so embarks on the following experiment. During a single week manager Bears raises
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the price on bananas $0.1 per day and records how many bananas were sold, comparing
with the profit margin per banana:

Profit Margin in $ Bananas Sold
Monday 0.1 5
Tuesday 0.2 4
Wednesday 0.3 1
Thursday 0.4 1
Friday 0.5 −1

On Friday, no bananas were sold, but one student was so enraged at the banana prices
that he squashed a banana at the register, resulting in a negative sale. (Yeah, yeah, I
know. The “−1” messes the model up. If you insist, patch it up by assuming the base
cost for a banana is $0.5 so the profit on a squashed banana is −$0.5.)

(a) Using the least squares method find the best linear estimate b(p) for the number
of bananas sold b as a function of the profit margin p.

(b) At what price should G. Bears set the price of bananas in order to maximize total
profits. (Hint: maximize p · b(p))

2. In an inner product space V , the unit sphere is the set of all vectors v for which
||v|| = 1. Note that this “sphere” may not be the conventional sphere in dimensions
different from 3. Describe the unit spheres of each of the following inner product
spaces:

(a) V = R1. Inner product is multiplication.

(b) V = R2. Inner product is dot product.

(c) V = R3. Inner product is dot product.

(d) V = P3. Inner product as in problem 3.

3. (a) Let u,v ∈ Rn, with ‖u‖ = 1 and ‖v‖ = 1. Prove that

|u · v| ≤
n

∑

i=1

|ui| |vi| ≤
n

∑

i=1

|u2
i |+ |v2i |

2
= 1 = ‖u‖ ‖v‖.

(b) Use Additional Problem 1 to prove the Cauchy-Schwartz inequality:

|u · v| ≤ ||u|| ||v||, for any u,v ∈ Rn.

(c) Now use the Cauchy-Schwartz inequality to prove the triangle inequality:

||u+ v|| ≤ ||u||+ ||v||, for any u,v ∈ Rn.
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15. Orthonormal Bases

Introduction

We have already seen the important role of the standard basis of Rn. Many of the important
properties of this basis stem from it being an orthonormal set. Just as bases are building
blocks of vector spaces, orthonormal bases are building blocks of inner product spaces.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) Any basis for Pn (the vector space of all polynomials of degree ≤ n) must contain
a polynomial of degree k for each k = 0, 1, 2, ..., n.

(b) If A is a 3× 5 matrix, then the column vectors of A are linearly independent.

(c) If A is a 4 × 4 matrix whose column vectors form an orthonormal basis for R4,
then A is invertible.

(d) Every nonzero finite-dimensional inner product space has an orthonormal basis.

Problems

1. (a) Let θ be a real number. Show that the vectors v1 = (cos θ, sin θ) and v2 =
(− sin θ, cos θ) form an orthonormal basis for R2.

(b) Let u1 = (1, 1) and u2 = (0,−1). Find a 2 × 2 matrix A which induces a linear
transformation TA such that TA(u1) = v1 and TA(u2) = v2.

2. (a) Show that {v1,v2,v3} is an orthonormal basis for R3, where v1 = ( 1√
2
, 1√

2
, 0),

v2 = (− 1√
2
, 1√

2
, 0), and v3 = (0, 0, 1).

(b) Find the coordinates of w = (
√
2, 3

√
2,−4) with respect to this basis.

(c) Let

A =





3 −1 0
−1 3 0
0 0 −1



 .

Show that Av1 = 2v1, Av2 = 4v2, and Av3 = −v3.

(d) Check your answer to (b) by computing Aw using the results of (c).

3. Find an orthonormal basis for the subspace of R4 spanned by (1, 2, 2, 4) and (2, 2, 3, 1).
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4. Let P2[−1, 1] be the space of polynomials on the interval [−1, 1] and having degree at

most 2, and let f · g =
∫ 1

−1
f(x)g(x) dx.

(a) Use the Gram-Schmidt process to construct an orthonormal basis for P2[−1, 1]
from the basis {1, x, x2}.

(b) Find f · g, where f(x) = 1 + x and g(x) = x2 − 2x in P2[−1, 1]. (Can you do the
problem without without integrating ?)

5. Let {v1, . . . ,vn} be an orthonormal basis for the inner product space V , and let u ∈ V .

(a) Let αi = angle(u,vi). What does this mean?

(b) Show that
∑

i cos
2 αi = 1. (Hint: Multiply both sides by ||u||2.)

(c) How does (b) relate to the Pythagorean theorem?

6. Let A be a 2× 2 orthogonal matrix.

(a) Show that A is of the form
[

cos θ − sin θ
sin θ cos θ

]

or

[

cos θ sin θ
sin θ − cos θ

]

,

for some value of θ in the interval 0 ≤ θ < 2π.

(b) Geometrically, what does an orthonormal basis for R2 look like?

(c) What does an orthonormal basis for R3 look like?

Additional Problems

1. In C[0, π], let f · g =
∫ π

0
f(x)g(x) dx.

(a) Show that cosnx and cosmx are orthogonal in C[0, π] if m 6= n.

(b) What is ‖ cosnx‖ in C[0, π]?

(c) Is the set {1, cos x, cos 2x, cos 3x, . . .} a linearly independent set? Justify.

2. Let A be a square matrix.

(a) Show that ‖Ax‖ = ‖ATx‖ if AAT = ATA.

(b) Find a 2 × 2 matrix A such that AAT 6= ATA. For this A, find a vector x ∈ R2

such that ‖Ax‖ 6= ‖ATx‖.

3. A matrix is orthogonal if it is square and its columns are orthonormal.

(a) Show that if the n × n matrix A is orthogonal, then the columns of A form an
orthonormal basis for Rn.

(b) Show that a matrix P whose columns form an orthogonal basis for Rn has the
nice property that P TP is a diagonal matrix.
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4. In light of the previous exercise, the definition of an orthogonal matrix may seem
inconsistent. A better way to justify the definition is in terms of the properties of the
corresponding linear transformation.

(a) Let A be an orthogonal matrix, and let v1, . . . ,vn be an orthogonal basis of Rn.
Show that Av1, . . . , Avn is also an orthogonal basis of Rn.

(b) Show that any matrix A which sends any orthogonal basis of Rn to an orthogonal
basis satisfies ATA = λI. If furthermore A sends orthonormal bases to orthonor-
mal bases, then λ equals 1. (Hint: Observe that (Av) · (Au) = v · (ATAu) and
show, for any orthogonal basis v1, . . . ,vn, that A

TAvi = λivi. Why must all λi

be equal?)

(c) Use part (b) to show that if A and B are orthogonal matrices, then so is AB.

(d) Let A and B be the matrices

A =





1 1 5
2 1 −4
3 −1 1



 and





4 1 1
−1 2 −2
2 −1 −3



 .

Show that the column vectors of A and of B each form orthogonal bases of R3

but that the column vectors of AB are not orthogonal.

(Remark: Orthogonal matrices can also be characterized as length preserving transfor-
mations.)
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16. Determinants

Introduction

At one time determinants played a major role in the study of linear algebra. Although
our use of determinants will be mainly in connection with computing eigenvalues of square
matrices, understanding why these computations work is at least as important as being able
to carry them out.

Questions

1. Let A be a square matrix. List at least four different statements which are equivalent
to the statement

detA 6= 0.

2. Let A and B be n × n matrices. Answer the following True or False. If False give a
counterexample.

(a) det(AB) = det(BA)

(b) det(AB) = detA detB

(c) det(A+B) = detA+ detB

(d) If A and B are both invertible, then AB is invertible.

(e) detA = detAT

(f) If A is invertible, then det(A−1) = (detA)−1.

(g) If a is a scalar then det(aA) = an det(A).

3. Suppose A is a 3 × 3 matrix with determinant 5. What is det(3A)? det(A−1)?
det(2A−1)? det((2A)−1)?
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Problems

1. Linear equations and buckling of structures
The stability of structures is an important topic in civil and mechanical engineering,
discussed in introductory courses such as CE 130 (Mechanics of Materials I). Structures
like bridge supports, soda cans, and robot legs will buckle if they are subjected to
excessive loads. We will show in this worksheet how to determine the load at which
a simple structure will buckle. Mathematically, we will be studying systems of linear
equations depending on parameters.

A structure with two degrees of freedom (able to bend at two places) is shown in the
figure below. It consists of two rigid beams and two spring joints. A load (force) P
is applied at point A. For certain values of P , called buckling loads, the structure
will react by bending, as shown in the right hand part of the figure. To determine
the buckling loads, one uses the equilibrium equations for moments (we won’t do that
here) and the small angle approximation sin θ ≈ θ to get the system of linear equations
for the deflection angles θi:

K(θ2 − θ1)− PLθ2 = 0

Kθ1 −K(θ2 − θ1)− PLθ1 = 0

where K is the spring constant and L is the length of a beam.

P

L

L

P

A

(a) Put the pair of equations above in matrix form (AX = B). The matrix A, which
describes the structure’s response to an applied force, is called the stiffness matrix.

(b) For any value of P , X = 0 is a solution of the equation which you just wrote.
What does it mean in terms of the shape of the structure?

(c) For which values of P (expressed in terms of K and L) does the matrix equation
have a nontrivial solution? For these values of P (the buckling loads), the nontriv-
ial solutions, which are called the buckling modes, show how the structure bends.
Find them. (Hint: The non-trivial solutions exist only when the determinant of
the stiffness matrix vanishes.)
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(d) Sketch the structure in each of the buckling modes if L = 5 meters and K = 40
newtons/meter. If the load is initially zero and increases gradually, which buckling
mode do you expect to occur first?

(e) Suppose that there are three beams and joints instead of two. How do the re-
sults (number and magnitude of buckling loads, and geometry of buckling modes)
change?

2. Prove that the determinant of a 2 × 2 matrix is 0 if and only if one row is a multiple
of the other.

3. Compute the following:

(a)

∣

∣

∣

∣

1 3
2 5

∣

∣

∣

∣

(b)

∣

∣

∣

∣

∣

∣

1 −1 −2
3 0 1
−1 1 1

∣

∣

∣

∣

∣

∣

(c)

∣

∣

∣

∣

∣

∣

sin θ cos θ 0
− cos θ sin θ 0

0 0 1

∣

∣

∣

∣

∣

∣

4. By inspection, evaluate the following determinants:

(a)

∣

∣

∣

∣

∣

∣

3 0 0
1 4 0
1 5 9

∣

∣

∣

∣

∣

∣

(b)

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 1
0 0 4 9
0 16 25 36
49 64 81 100

∣

∣

∣

∣

∣

∣

∣

∣

(c)

∣

∣

∣

∣

∣

∣

∣

∣

0 π 0 0

0 0 −
√
2 0

1 0 0 0
0 0 0 22

∣

∣

∣

∣

∣

∣

∣

∣

5. (a) Let A be a square matrix. If detA 6= 0, how many solutions does the equation
Ax = 0 have?

(b) Let B be a 3× 3 matrix such that the entries in each row of B add up to 0 (i.e.,
bi1 + bi2 + bi3 = 0 for 1 ≤ i ≤ 3). Use part (a) to show that detB = 0.

6. Show that if A is a square matrix with a row of zeros, then detA = 0. What if A has
a column of zeros?

Additional Problems

1. Prove that the area of the parallelogram spanned by the vectors u and v of R2 is given
by the determinant of the 2× 2 matrix formed by taking u as the first row, and v as
the second row. That is:

Area =

∣

∣

∣

∣

−u−
−v−

∣

∣

∣

∣

.
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2. Prove that the rank of an n× n matrix A is the largest integer k for which there is a
k × k sub-matrix of A that has a nonzero determinant.

3. Show that {v1, . . . ,vn} forms a basis for Rn if and only if the determinant of the
coordinate matrix is not zero.

4. Suppose f , g, and h are vectors in C2(−∞,∞) (the vector space of functions which
are twice differentiable on the entire real line). The function

W (x) =

∣

∣

∣

∣

∣

∣

f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

∣

∣

∣

∣

∣

∣

is called the Wronskian of f , g, and h. Prove that {f, g, h} is a linearly independent
set in C2(−∞,∞) if the Wronskian is not identically zero (i.e., there is at least one
real number x0 such that W (x0) 6= 0).
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17. Eigenvalues and Eigenvectors

Introduction

If A is an n×nmatrix, there is often no obvious geometric relationship between a vector x and
its image Ax under multiplication by A. However, frequently there are some nonzero vectors
that A maps into scalar multiples of themselves. These “eigenvectors” play an important
role in the analysis of linear systems and arise naturally in many physical applications.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) If A is a 4×4 matrix, then det(λI−A) = 0 must have exactly four distinct roots.

(b) The vector 0 is an eigenvector of any matrix. (Careful)

(c) If a matrix has one eigenvector, then it has an infinite number of eigenvectors.

(d) The sum of two eigenvalues of a matrix A is also an eigenvalue of A.

(e) The sum of two eigenvectors of a matrix A is also an eigenvector of A.

(f) There exists a square matrix with no real eigenvalues.

(g) There exists an n× n matrix with n+ 1 distinct eigenvalues.

2. For each of the following matrices, describe in geometric terms the eigenspaces (if any)
and their associated eigenvalues. Do not compute the matrices.

(a) The matrix induced by the linear transformation T : R3 −→ R3 which reflects
each vector across the z-axis.

(b) The matrix induced by the linear transformation T : R2 −→ R2 which rotates
each vector by π/4 radians counterclockwise.

Problems

1. Let A be an n×n matrix. Show that A is invertible if and only if 0 is not an eigenvalue
of A.

2. Find the eigenvalues, and bases for the associated eigenspaces, of

A =





5 6 2
0 −1 −8
1 0 2



 .
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3. Give an example of a 2×2 matrix with two linearly independent eigenvectors, but only
one eigenvalue.

4. Find a 3× 3 matrix with eigenvalues 0, 1,−1 and corresponding eigenvectors (0, 1, 1),
(1,−1, 1), and (0, 1,−1).

5. Two n × n matrices A and B are said to be similar if there is an invertible n × n
matrix S such that B = S−1AS. Show that similar matrices always have the same
eigenvalues. Must they have the same eigenvectors?

Additional Problems

1. Let A be a 4× 4 matrix.

(a) If the eigenvalues of A are 1,−2, 3,−3, can you find det(A)?

(b) What if the eigenvalues are −1, 1, 2? What about −1, 0, 1?

2. (a) Show that the eigenvalues of an upper triangular n× n matrix are the entries on
the main diagonal.

(b) Show that if λ is an eigenvalue of an n× n matrix A then λ2 is an eigenvalue of
A2. More generally, show that λk is an eigenvalue of Ak if k is a positive integer.

(c) Use (a) and (b) to find the eigenvalues of A9, where

A =









1 3 7 11
0 −1 3 8
0 0 −2 4
0 0 0 2









3. Let A be an n× n matrix.

(a) Prove that the polynomial p(λ) = det(λI − A) has degree n.

(b) Prove that the coefficient of λn in the polynomial det(λI − A) is 1.
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18. Diagonalization

Introduction

We now turn our attention to the so-called “diagonalization problem.” Given an n×n matrix
A, we will try to answer the following question: Does there exist a diagonal matrix Λ and an
invertible n×n matrix S such that S−1AS = Λ? Diagonalization can be useful in translating
difficult computations into much simpler ones involving diagonal matrices.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) Any n× n matrix that has fewer than n real distinct eigenvalues is not diagonal-
izable.

(b) Eigenvectors corresponding to the same eigenvalue are always linearly dependent.

(c) If A is diagonalizable, then it has at least one eigenvalue.

2. Suppose A is a 2 × 2 matrix with characteristic polynomial (λ − 2)2. What can you
conclude about the diagonalizability of A? What can you conclude if B is a 4 × 4
matrix with characteristic polynomial (λ− 2)2(λ+ 1)(λ− 1)?

Problems

1. Let A be a 3×3 matrix with the following eigenvectors and corresponding eigenvalues:

(1, 1, 1) and (1,−2, 0) are eigenvectors corresponding to the eigenvalue λ = 3.
(1, 1,−2) is an eigenvector corresponding to the eigenvalue λ = −3.

(a) Find A by finding an invertible matrix S and a diagonal matrix Λ such that
A = SΛS−1.

(b) Are your S and Λ unique? In other words, could you have used a different pair
of matrices S and Λ to get the same A?

2. Let A be the matrix to the right. In this exercise we
determine whether A is diagonalizable without doing
any hard work.

A =





2 0 −2
0 3 0
0 0 3



.

(a) Find the eigenvalues of A. Call them λ1 and λ2.

(b) Write down the matrix λ1I − A.
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(c) What is the rank of λ1I − A? What is its nullity? How many independent
eigenvectors are there with eigenvalue λ1? (Don’t compute them.)

(d) What is the rank of λ2I − A? What is its nullity? How many independent
eigenvectors are there with eigenvalue λ2?

(e) Is A diagonalizable?

3. Show that if b 6= 0 then

[

a b
0 a

]

is not diagonalizable.

4. Is





5 0 0
1 5 0
0 1 5



 diagonalizable?

5. (a) Suppose that S−1AS = Λ, where Λ is diagonal. Show that Ak = SΛkS−1 for any
positive integer k.

(b) Use part (a) to compute A10, where A =

[

1 0
−1 2

]

.

Additional Problems

1. Let A be a square matrix.

(a) Show that det(AT − cI) = det(A− cI) for any constant c. (Hint: (A− cI)T = ?)

(b) Show that det(B−1AB − cI) = det(A− cI) for any constant c.

(c) Argue that A, AT , and B−1AB all have the same eigenvalues.

(d) Show that if there exists a matrix P such that P−1AP is diagonal, then the
diagonal entries of P−1AP are the eigenvalues of A.

(e) Do A, AT , and B−1AB all have the same eigenvectors?

2. Let A =

[

a b
c d

]

. Show:

(a) A is diagonalizable if (a− d)2 + 4bc > 0.

(b) A is not diagonalizable if (a− d)2 + 4bc < 0.

(c) Give examples to show that A may or may not be diagonalizable if (a−d)2+4bc =
0.

3. Let A be an n × n matrix. Show that A is diagonalizable if and only if AT is diago-
nalizable.

4. Pretend that you are head GSI for Math 54. For the first few days of the semester,
you noticed that each day, 20% of the people in Math 54 switched to Math 54M, and
10% of the people in Math 54M switched into Math 54.
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(a) Let x(n) =

[

x1(n)
x2(n)

]

, where x1(n) is the number of people in Math 54 on day

n and x2(n) is the number of people in Math 54M on day n. Show that (for the
first few days)

x(n+ 1) =

[

0.8 0.1
0.2 0.9

]

x(n)

(b) You are trying to determine whether to open new discussion sections or not, so
you’d like to guess how many people will end up in each class. In order to do
this, let’s assume that the pattern you have observed will continue. Under this
assumption, show that x(n) = Anx(0), where A is the matrix above.

(c) Thus you would like to know what An looks like for large n. Toward that end,
find the eigenvalues of A.

(d) Find a matrix P such that P−1AP is a diagonal matrix D.

(e) Show that An = PDnP−1. Compute Dn and PDnP−1.

(f) As n grows large show that An converges to

[

1/3 1/3
2/3 2/3

]

.

(g) Argue that no matter how many people started in each class that eventually 1/3
of all students will be in Math 54 and 2/3 will be in Math 54M.
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19. Symmetric Matrices

Introduction

In our quest to understand which matrices can be diagonalized, it is useful to consider cer-
tain special cases. In the case of symmetric matrices, all of the theoretical and some of the
important computational difficulties are removed. Not only is every symmetric matrix A di-
agonalizable, but it is orthogonally diagonalizable (i.e., there is a matrix S with orthonormal
columns such that S−1AS is diagonal.)

Questions

1. Let A be an n×n matrix. Answer the following true or false. Explain your reasoning,
or give a counterexample.

(a) If A is orthogonally diagonalizable, then A is symmetric.

(b) If A is not symmetric, then A has at least one non-real eigenvalue.

(c) If A is symmetric with eigenvalue λ repeated 5 times then the eigenspace corre-
sponding to λ has dimension 5.

2. Suppose that A is a 2 × 2 matrix with eigenvalues 0 and 1 and corresponding eigen-
vectors (1, 3) and (3,−1).

(a) Is A symmetric?

(b) Find A and check your answer to part (a).

Problems

1. Let A =





1 1 0
1 1 0
0 0 0



.

Find a matrix Q that orthogonally diagonalizes A, and determine Q−1AQ.

2. Let

A =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









(a) What is rk(A)? If NS(A) is the null space of A then what is dimNS(A)?
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(b) Why is 0 an eigenvalue of A, and what is the dimension of the eigenspace corre-
sponding to 0?

(c) Does A have any other eigenvalues besides 0? Explain.

3. Prove that if there is an orthogonal matrix that diagonalizes A, then A is symmetric.
(See Question 1a.)

4. Let A be a 4× 4 matrix.

(a) If the eigenvalues of A are 1, -2, 3, -3, can you figure out det(A)?

(b) What if the eigenvalues are -1, 1, 2?

(c) What if the eigenvalues are -1, 0, 1?

Additional Problems

1. (a) Find the eigenvalues of

[

a b
b a

]

.

(b) Diagonalize

[

a b
b a

]

.

(c) Compute

[

a b
b a

]k

for k ≥ 1.
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20. The Wronskian and Linear Independence

Introduction

In Math 1B, you solved second order linear homogeneous equations with constant coefficients
by first finding two linearly independent solutions. You were told–most likely without proof–
that any solution would be a linear combination of these two solutions. The Wronskian can
be used to check that two solutions are linearly independent. These two solutions form a
basis for the solution space.

This happens to be true of all second order linear homogeneous equations, and can be
proved with the help of a determinant called the Wronskian. Also, the two functions used
in the general solution of a linear homogeneous equation form a special set which is a basis
for the vector space of solutions.

Questions

1. Suppose you are given a second order linear homogeneous differential equation.

(a) What is meant by a fundamental set of solutions of the equation?

Hint: what do you do with repeated roots?

(b) Must a fundamental set of solutions exist? If so, is the set unique?

2. Give an example of a fundamental set of solutions for the equation y′′ − 2y′ + y = 0.

3. What would a fundamental set of solutions of a first order equation be? How many
solutions must there be in the set?

4. Consider the differential equation y′′ + (x2 + 1)y′ − 1

x
y = 0. Is there a solution that

also satisfies y(2) = −1 and y′(2) = 3?

5. If the Wronskian of two functions is W (t) = t cos2 t, are the functions linearly inde-
pendent or linearly dependent?

Problems

1. (a) Let V be a vector space. What does it mean for two vectors in V to be linearly
independent? Show that y1 = e−x and y2 = xe−x are linearly independent as
vectors in C(−∞,∞).
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(b) What does it mean for two functions to be linearly independent on the interval I?
Use the Wronskian to show that y1 = e−x and y2 = xe−x are linearly independent
on (−∞,∞). Are there any infinite intervals I on which y1 and y2 are not linearly
independent?

2. Find a fundamental set {y1, y2} of solutions to the equation y′′ + 4y = 0 such that
y1(

π
2
) = 1, y′1(

π
2
) = 0, y2(

π
2
) = 0, and y′2(

π
2
) = 1. Is your set unique?

3. Show that the functions x3 and |x3| are linearly independent, and differentiable, but
that their Wronskian is identically zero. Why is this not a contradiction?

4. (a) Show that the functions x and x2 are linearly independent on the interval (−1, 1).

(b) Show that W (x, x2)(0) = 0.

(c) What can you conclude about the possibility that x and x2 are solutions of a
differential equation y′′ + p(x)y′ + q(x)y = 0?

(d) Verify that x and x2 are solutions of the equation x2y′′ − 2xy′ + 2y = 0.

(e) Read Abel’s theorem. Is there a contradiction here? Figure out what’s going on.

5. (a) If a, b, and c are positive constants, show that all solutions of ay′′ + by′ + cy = 0
approach zero as x → ∞.

(b) If a > 0, c > 0, and b = 0, show that the result of part (a) is not true, but that
all solutions are bounded as x → ∞.

(c) Now suppose that a > 0, b > 0, but that c = 0. Show that the result of part
(a) is not true, but that all solutions approach a constant that depends on the
initial conditions as x → ∞. Determine this constant for the initial conditions
y(0) = y0, y

′(0) = y′0.
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21. Higher Order Linear ODEs

Introduction

What you already know about solutions of second order linear equations can be generalized
to higher order equations, and the methods for solving homogeneous equations with constant
coefficients can also be generalized. As with second order equations, begin by assuming that
y = erx is a solution of a0y

(n) + a1y
(n−1) + · · · + an−1y

′ + any = 0 for some r, to obtain the
characteristic equation a0r

n + a1r
n−1 + · · · + an−1r + an = 0. By solving for r and dealing

with the cases that a given root is real and unique, real and repeated, or complex, one can
then construct a general solution to the original ODE.

Questions

1. Without computing a determinant, find the Wronskian of the functions 2, cos 2t, and
sin2 t.

2. Answer the following True or False:

(a) The differential equation

(tan x)y′′′ + (1− x)y′′ + x2y′ + y = 0

has a solution on the interval (0, 2).

(b) The functions y1(t) = eλt cosµt and y2(t) = eλt sinµt are linearly independent.

(c) The equation r4 − 2 has precisely two distinct roots (over the complex numbers?,
over the real numbers?).

Problems

1. Find the general solution to the differential equations (Hint: look for roots dividing
the last coefficient.)

(a) y′′′ + 2y′′ − y′ − 2y = 0

(b) yiv + 5y′′′ − y′′ − 17y′ + 12y = 0

2. Consider the second order differential equation y′′ + 3y′ + 4y = 0.

(a) Let x1 = y and x2 = y′. Rewrite the equation as a system of two first order
equations in the two functions x1 and x2.
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(b) Show that the system in (a) can be written as x′ = Ax, where x =

[

x1

x2

]

and

A =

[

0 1
−4 −3

]

.

(c) Show that the equation in problem 1(a) can also be written as x′ = Ax, where

x =





x1

x2

x3



 and A =





0 1 0
0 0 1
2 1 −2



 .

3. (a) Show that the general solution of yiv − y = 0 can be written as

y = c1 cos t+ c2 sin t+ c3 cosh t+ c4 sinh t.

(b) Determine the solution satisfying the initial conditions y(0) = 0, y′(0) = 0,
y′′(0) = 1, and y′′′(0) = 1.

4. (a) Find a homogeneous third order differential equation with constant coefficients
that has

y(x) = 3e−x − cos 2x

as a solution.

(b) What is the general solution of the equation you found in part (a)?

Additional Problems

1. Recall the following existence and uniqueness theorem:

If the functions p1, p2, . . . , pn, and g are continuous on the open interval I,
then there exists exactly one solution y = φ(t) of the differential equation (2)
that also satisfies the initial conditions (3). This solution exists throughout
the interval I.

(a) Assume G(t) = 0 and each pi(t) is constant, so that the theorem is referring to
a homogeneous nth order linear differential equation with constant coefficients.
Show that the set of solutions forms a subspace of the vector space of all functions.

(b) Use the above theorem to show that the dimension of the solution space is exactly
n.
[Hint: Suppose you have a basis {y1, . . . , yk}. Use the existence part of the the-
orem to argue that k ≥ n, and use the uniqueness part of the theorem to argue
that k ≤ n.]

2. Let L be a second order linear differential operator, and suppose that three solutions
to the equation Lx = g(t) are x(t) = t, x(t) = t+ e−t, and x(t) = 1 + t+ e−t.
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(a) Find a solution to Lx = g(t) satisfying the initial conditions x(0) = 0, x′(0) = 0.

(b) Find a solution to Lx = g(t) satisfying the initial conditions x(0) = 0, x′(0) = 1.

(c) What is the solution to Lx = g(t) satisfying the initial conditions x(0) = x0,
x′(0) = x′

0? Why must such a solution exist? (Hint: See the above existence and
uniqueness theorem.)
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22. Homogeneous Linear ODEs

Introduction

This worksheet provides a recap of some important concepts involved in solving linear ho-
mogeneous equations. A few of the problems here are taken from some recent Math 54 final
exams.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) If the characteristic equation of a 5th order homogeneous equation with constant
coefficients has complex roots, then the graph of any solution x(t) will oscillate
steadily as t → ∞.

(b) If the characteristic equation of a 5th order homogeneous equation with constant
coefficients has a complex root λ+µi which is repeated twice, then there are four
linearly independent real-valued solutions corresponding to that root.

(c) If f and g are two differentiable functions such that their Wronskian is given by
W (f, g)(t) = 0 for all t, then f and g are linearly dependent.

(d) If f and g are two differentiable functions such that their Wronskian is given by

W (f, g)(t) =

{

0, if t = 0
t2 + 1, if t 6= 0

(1)

then f and g cannot both be solutions to a differential equation of the form

y′′ + p(t)y′ + q(t)y = 0.

Hint: look carefully at equation 10.

Problems

1. Consider the differential equation xy′′ − (x + 1)y′ + y = 0. Check that y1 = ex is a
solution and use Abel’s theorem to find a second, linearly independent solution.

2. Find the Wronskian of two linearly independent solutions of x2y′′+xy′+(x2− 1)y = 0
without solving the equation.
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3. Consider the differential equation

(sin x)y′′′ + (cosx)y = (x− 1)−1,

and suppose we are interested in a solution y0 that satisfies

y0(1.5) = 1, y′0(1.5) = 1, . . . , y
(n)
0 (1.5) = 1

for as large an n as we can get.

(a) What is the largest value of n for which we are assured that such a y0 exists in
some interval about x = 1.5?

(b) What is the largest interval about x = 1.5 for which we know that such a solution
exists?

Additional Problems

1. Find three functions y1(x), y2(x), and y3(x) defined on (−∞,∞) whose Wronskian is
given by

W (y1, y2, y3)(x) = e4x.

Are your functions linearly independent on (−∞,∞)?

2. (a) Show that if y1 is a solution of

y′′′ + p1(t)y
′′ + p2(t)y

′ + p3(t)y = 0,

then the substitution y = y1(t)v(t) yields the following second order equation for
v′:

y1v
′′′ + (3y′1 + p1y1)v

′′ + (3y′′1 + 2p1y
′
1 + p2y1)v

′ = 0.

(b) Use part (a) to solve

(2− t)y′′′ + (2t− 3)y′′ − ty′ + y = 0, t < 2; y1(t) = et.
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23. Systems of First Order Linear Equations

Introduction

Systems of linear differential equations arise in many physical problems. Solving a system
of first order linear homogeneous equations x′ = Ax is analogous to solving a single first
order equation of the form y′ = ky. We assume that a solution of the form x = ξert exists,
and proceed by finding the vector ξ and the exponent r. The linear algebra tools we have
acquired this semester will save the day.

Questions

1. (a) What does it mean for two vectors to be linearly independent?

(b) What does it mean for two functions to be linearly independent?

(c) What does it mean for two vector-valued functions

x(t) =

[

x1(t)
x2(t)

]

and y(t) =

[

y1(t)
y2(t)

]

to be linearly independent?

(d) What does it mean for two vector-valued functions x(t) and y(t) to be linearly
independent on an interval?

(e) Show that x(t) =

[

et

tet

]

and y(t) =

[

1
t

]

are linearly dependent for each fixed t in

[0, 1], yet they are linearly independent on the interval [0, 1].

2. Discuss with your group the two types of Wronskians. Understand, among other things:

(a) What is the Wronskian of a collection of (real-valued) functions?

(b) What is the Wronskian of a family of n vector-valued functions, whose values are
in Rn?

(c) An nth order linear homogeneous differential equation with constant coefficients
has n linearly independent solutions. How does the Wronskian of these functions
compare with the Wronskian of the n linearly independent vector-valued functions
you obtain by solving the corresponding first order system of linear differential
equations?

(d) Do an example if you’re the slightest bit confused. Pick an easy second order
differential equation that you can solve, solve it and look at the Wronskian. Then
solve the corresponding system of first order equations and look at the Wronskian
of those solutions.
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Problems

1. (a) Compute the Wronskian of the vector-valued functions

x(1) =

[

t
1

]

and x(2) =

[

t2

2t

]

.

(b) On what intervals are x(1) and x(2) linearly independent?

(c) What conclusion can you draw about the coefficients in a system of homogeneous
differential equations satisfied by x(1) and x(2)?

(d) Find a system of homogeneous differential equations satisfied by x(1) and x(2) and
verify your conclusion in part (c).

2. Consider the system x′ = Ax where A =

[

2 3
−1 −2

]

.

(a) Plot a direction field for the system.

(b) Find the general solution of the system and describe the behavior of the solution
as t → ∞.

(c) Sketch some trajectories of the system.

3. Part of a mixing device consists of two tanks connected by pipes. Suppose that initially,
tank A contains 16 gallons of water with 8 pounds of salt dissolved in it, and tank B
contains 16 gallons of pure water.

(a) Suppose that the mixer pipes fluid from A to B at the rate of 1 gallon per minute,
and another pipe takes fluid from B to A at the same rate. Set up a system of
two first order equations and find the amount of salt in each tank as a function
of time. Will tank B ever have more salt than tank A?

(b) Now suppose that pure water is being added to tank A at the rate of 3 gallons per
minute. The mixer is still running, pumping from A to B at 4 gallons per minute
and from B to A at 1 gallon per minute. The solution in tank B is also draining
at 3 gallons per minute. Find the amount of salt in each tank as a function of
time.

(c) At what time T will B switch over to become saltier than A ?

Additional Problems

For now, pretend you know nothing about how to solve a system of n first order linear
homogeneous equations. Let’s start from scratch with a very simple case.

1. Suppose A is a diagonalizable n × n matrix. Show that the system x′ = Ax can be
solved by setting x = Pz and solving the system

z′ = P−1APz,

where P is an invertible n× n matrix which diagonalizes A.
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2. Let A =

[

0 1
−2 3

]

. Solve the system x′ = Ax by following these steps:

(a) Diagonalize A and find P .

(b) Solve z′ = P−1APz for z and let x = Pz.

3. Let F be the vector field defined by F(x, y) = (2x− y, 3x− 2y).

(a) Sketch the vector field F.

(b) What is the direction field for the differential equation x′ =

[

2 −1
3 −2

]

x?

(c) Solve the differential equation in (b) and sketch some of the trajectories.

(d) What are the eigenvectors of

[

2 −1
3 −2

]

?
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24. Systems of First Order Equations–Continued

Introduction

We continue our investigation of the system x′ = Ax by looking at two cases: When the
n×n matrix A has fewer than n linearly independent eigenvectors, and when A has complex
eigenvalues. Recall from Math 1B that when the auxiliary equation ar2 + br + c = 0 had
complex or repeated roots, the corresponding real-valued solutions of ay′′ + by′+ cy = 0 had
a slightly different form. The method for systems of equations will be similar. Also, note
that previously we only looked for real eigenvalues of real matrices. We now consider the
possibility that some of the eigenvalues could be complex. Although complex eigenvalues will
have complex corresponding eigenvectors, we can use them to find real-valued solutions of
the system x′ = Ax. Furthermore, when λ is a repeated eigenvalue with only one eigenvector
ξ, there will be a vector η, called a generalized eigenvector, which will have the following
properties:

• Aη = λη + ξ

• ξteλt + ηeλt is a solution to x′ = Ax.

Questions

1. Answer the following true or false. Explain your reasoning, or give a counterexample.

(a) All of the eigenvalues of a real, symmetric matrix are real.

(b) If a real, symmetric n × n matrix A has n − 1 distinct eigenvalues, then A does
not have n linearly independent eigenvectors.

(c) If A is a 2× 2 real matrix with one eigenvalue ρ (of multiplicity 2), and only one
corresponding eigenvector ξ, then there is another vector η such that

(A− ρI)η = ξ

2. Show that x(t) = ξert solves x′ = Ax if and only if r is an eigenvalue of A with
eigenvector ξ.

3. (a) Let

[

x1

x2

]

= c1e
−t

[

cos t
− sin t

]

+ c2e
−t

[

sin t
cos t

]

be the general solution of the

system x′ = Ax. Describe the behavior of the solutions in the plane as t → ∞.

(b) What is the function x1(t)? Describe the graph of x1(t) versus t.
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Problems

1. Suppose that the 2 × 2 matrix A has eigenvalues r1 = 1 + 2i and r2 = 1 − 2i with
corresponding eigenvectors

ξ(1) =

[

1
1− i

]

and ξ(2) =

[

1
1 + i

]

(a) Write down two corresponding complex-valued solutions x(1) and x(2) to the sys-
tem x′ = Ax.

(b) Find the real and imaginary parts of x(1) and use them to find two real-valued
solutions u and v.

(c) Show that your vector-valued functions u and v from part (b) are linearly inde-
pendent.

2. Let A =

[

6 −8
2 −2

]

. Find an eigenvector and generalized eigenvector corresponding to

the eigenvalue r = 2.

3. Find the general solution for each of the following systems and sketch a few trajectories.

(a) x′ =

[

−6 4
−8 2

]

x

(b) x′ =

[

−6 4
−1 −2

]

x

4. Verify that x satisfies the given differential equation.

(a) x =

[

4
2

]

e2t; x′ =

[

3 −2
2 −2

]

x.

(b) x =

[

1
0

]

e2t +

[

2
2

]

tet; x′ =

[

2 −1
0 1

]

x+

[

2
2

]

et.

5. Verify that Ψ(t) satisfies the matrix differential equation. Ψ =

[

e−3t e2t

−4e−3t e2t

]

; Ψ′ =
[

1 1
4 −2

]

Ψ.

Additional Problems

1. Show that any solution to x′ =

[

a b
c d

]

x approaches 0 as t → ∞, provided that

a+ d < 0 and ad− bc > 0.
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2. Let A =





1 1 1
2 1 −1
−3 2 4



. Show that x(t) = ξ t2

2!
e2t+ηte2t+ζe2t is a solution of x′ = Ax,

where

ξ =





0
1

−1



 , (A− 2I)η = ξ, and (A− 2I)ζ = η .

3. Show that any nth order differential equation for y(x) can be written as a system of n
first order linear differential equations in the n unknowns

x1 = y(x), x1 = y′(x), . . . , xn = y(n−1)(x).

(a) If the equation is y(n) + an−1y
(n−1) + · · · + a0y = 0, then what is the system you

get?

(b) Write the system in matrix form.

4. Compute or recall the characteristic polynomial of the matrix















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1















.

Use the results of the above exercises to describe the set of solutions to the equation
y(n) + an−1y

(n−1) + · · · + a0y = 0. (Hint: Use Question 2 and Additional Problem 3.
This is not the easiest way to do this, but it is good practice going back and forth
between higher order linear equations and systems of first order linear equations.)
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25. Oscillations of Shock Absorbers

Introduction

The differential equations for damped oscillations model the shock absorber found on any
automobile, or even on a high-end mountain bike.

A shock absorber is essentially a spring and a damper. (See the figure below.) The spring
cushions the shock and provides a restoring force Fspring = −kx when it is stretched or
squeezed by an amount x from its “neutral” position. (The proportionality coefficient k is
called the spring constant.) The damper uses the viscosity of oil in a sealed container to
produce a drag force which keeps the bike from bouncing up and down too much: Fdamper =
−cv, where c is the drag coefficient and v = dx/dt is the (vertical) velocity of the effective
mass m; i.e. the portion of the mass of the bike and rider supported by the front wheel.

Newton’s law (Ftotal = ma) gives the equation:

−kx− cv = m
dv

dt
,

which leads to the second order equation

d2x

dt2
+

c

m

dx

dt
+

k

m
x = 0 (2)
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where m and k are positive and c is non-negative. Equivalently, we can write a system of
two first order equations in matrix form:

d

dt

[

x
v

]

=

[

0 1
− k

m
− c

m

] [

x
v

]

. (3)

Questions

1. Derive Equation (2) from (3).

2. Show that the vector function U(t) =

[

a
b

]

eλt, with a, b, and λ constants, satisfies

the differential equation
d

dt
U = λU.

Problems

The following problems will familiarize you with the behavior of mass-damper-spring sys-
tems.

1. Equation (3) has solutions of the form

[

x
v

]

=

[

a
b

]

eλt. Find the possible values of λ

by substituting the expression above into Equation (3) and using the result of Question
2 to get an eigenvalue problem. Find the eigenvalues λ1 and λ2.

2. Write the general solution of Equation (3) using the eigenvalues which you just found,
and corresponding eigenvectors ξ1 and ξ2. (You do not need to find ξ1 and ξ2 explicitly
yet.) The values of k

m
and c

m
will determine whether the the characteristic equation has

real or complex eigenvalues. If you have complex eigenvalues, you should use Euler’s
formula: ep+iq = ep(cos q+ i sin q) to rewrite the complex exponentials in terms of sines
and cosines.

3. Can the real part of any eigenvalue λ be positive, given that m, c and k are positive?
(Consider both cases: real eigenvalues and complex eigenvalues.) Can x or v grow
without bound as t increases? What is the meaning of this result in terms of a bouncing
bicycle?

4. Illustrate the effect of the relationship between the stiffness k/m and the damping
c/m by drawing a figure in the first quadrant of the (c/m, k/m) plane which shows
the types of solutions you get in different regions (e.g. “x and v oscillate but their
magnitudes decrease with time”). Which values of c/m and k/m give solutions which
do not oscillate?

Assume now that you and your bike have a mass of 100 kilograms, of which 40% is sup-
ported by the front wheel, and that your shock absorber has a rubber spring (k = 4,000
Newton/meter) and uses oil in the damper.
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5. You forget to fill the damper with oil, so that c = 0, and you hit a bump that gives you
a vertical velocity of 0.2 meters/second at a moment when x = 0. Find the particular
solution of Equation (3) with these initial conditions, draw the phase portrait, and
describe the vertical motion. (At this point, you will have to find the eigenvectors of
the matrix in Equation (3), not just the eigenvalues.)

6. Now you put oil (with a drag coefficient c = 500 Newton-second/meter) in the damper,
and you hit the same bump. Find and describe the motion, and draw the phase
portrait. How does this differ from the undamped case? Is this amount of damping
enough to prevent oscillations?

7. Why don’t you want c to be too small or too large?

Additional Problems

1. Now you really want to tweak your bike. You look at some books on shock absorbers,
and they say that the best you can do is to ‘critically damp’ the thing. This means
that the damping is just enough to prevent oscillations; mathematically, critical damp-
ing occurs at the transition between real and complex eigenvalues–on the boundary
between the regions in Problem 4.

(a) Given the effective mass m and the spring constant k, find the drag coefficient c
which you’ll need to critically damp your shock. (Hint: look at the discriminant
of the quadratic equation you used to find the eigenvalues λ1 and λ2.)

(b) At critical damping there is only one distinct eigenvalue, i.e. λ1 = λ2, so there is
another fundamental solution of the form

[

x
v

]

= ξeλ1t + ηteλ1t

where ξ is an eigenvector and η is a generalized eigenvector. Use this to find the
solution with the initial conditions produced by hitting a bump, as in Problems
5 and 6, draw the phase portrait, and describe the motion.

2. Here is another way to understand the effects of damping. Take the solution

[

x
v

]

which you found in Problems 5 and 6, and express the kinetic energy K = 1
2
mv2 and

potential energy P = 1
2
kx2 as functions of time. Plot (K,P ) as a parametric curve

(like the phase portraits you drew before). Look at the difference between the plot for
the undamped versus the damped shock absorber. What does the damper do to the
total energy. Does the law of conservation of energy apply here?
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26. Introduction to Partial Differential Equations

Introduction

In this worksheet we begin the study of partial differential equations and the methods by
which we solve these equations.

Problems

1. Solve the following differential equations:

(a) y′ = 3y

(b) y′ = xy

(c) y′ + (x− σ)y = 0

2. Evaluate the following partial derivatives:

(a)
∂

∂x
(x2y + cos yex − 2 sin x)

(b)
∂

∂t
(t cos tx)|t=0

(c)
∂

∂y
(x+ 3)

(d)
∂

∂y
(y3 − 3 cos 2y)

3. Suppose f = f(x) and g = g(y) are functions of the independent variables x and y. If
f(x) = g(y) for all x and y, what can you conclude about f and g?

4. Given a partial differential equation in two variables x and t, the idea of the method of
separation of variables is to look for solutions which can be written as a product of a
function of x and a function of t: u(x, t) = X(x)T (t). The partial differential equation
can then be reduced to two ordinary differential equations. Which of the following can
be solved by this method? For those that can, write down the corresponding pair of
ordinary differential equations.

(a) xuxx = ut

(b) xuxx + (x+ t)utt = 0

(c) tuxx + xut = 0

(d) [p(x)ux]x − r(x)utt = 0

5. Now let’s try to solve a partial differential equation:

(a) Find all solutions of the form u(x, t) = X(x)T (t) to the equation

∂u

∂t
+ tu =

∂2u

∂x2

on the intervals 0 < x < π and t > 0, with the boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0.
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(b) Find a solution satisfying the initial condition u(x, 0) = sin2 x.

6. Let

S =

{

√

2

π
sin x,

√

2

π
sin 2x,

√

2

π
sin 3x, . . .

}

, and

C =

{

√

1

π
,

√

2

π
cosx,

√

2

π
cos 2x, . . .

}

,

(a) Show that S is an orthonormal set in C[0, π].

(b) Show that C is an orthonormal set in C[0, π].

(c) Show that S ∪ C is not an orthonormal set in C[0, π].

(d) Show that S ∪ C is an orthogonal set in C[−π, π]. What normalization makes
S ∪ C orthonormal in C[−π, π]?

7. Solve the heat equation 100uxx = ut on the intervals 0 < x < 1 and t > 0, subject
to the conditions u(0, t) = 0 and u(1, t) = 0 for all t. Assume also that the initial
temperature profile is given by u(x, 0) = sin 2πx− 2 sin 5πx for 0 ≤ x ≤ 1.
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27. Partial Differential Equations and Fourier Series

Introduction

This worksheet serves as an introduction to the Fourier series which we will use to solve
partial differential equations.

Problems

1. Compute the following values of sine and cosine. Here k is an integer.

(a) sin kπ

(b) cos kπ

(c) sin 2k−1
2

π

(d) cos 2k−1
2

π

(e) sin kπ
2

(f) cos kπ
2

2. Let g(x) = l on (0, l).

(a) Draw the even extension of g to (−l, l). Compute the cosine series for g.

(b) Draw the odd extension of g to (−l, l). Compute the sine series for g.

3. Let f(x) = x on [−l, l].

(a) Compute the Fourier series of f .

(b) What is the solution to the heat equation uxx = 4ut on the intervals
−l < x < l and t > 0 with the boundary conditions u(−l, t) = u(l, t) = 0 and the
initial condition u(x, 0) = sin nπx

l
?

(c) Use the principle of superposition to solve the heat equation uxx = 4ut on −l <
x < l and t > 0 with the boundary conditions u(−l, t) = u(l, t) = 0 and the initial
condition u(x, 0) = 0.

4. Let f(x) =







0 if − l < x < 0,
l/2 if x = 0,
l if 0 < x < l.

(a) Sketch f and its periodic extension.

(b) Compute the Fourier series of f .

(c) Compare this Fourier series to the one from Problem 2. Note that f = l
2
+ h for

some odd function h.

(d) The Fourier theorem guarantees that the Fourier series you computed in (b) con-
verges to f for each x in (−l, l). What does this mean?

(e) Evaluate the infinite series 1− 1
3
+ 1

5
− 1

7
+ · · · . (Hint: Use part (d), and choose

a good value to plug in for x.)
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5. Assume that f has a Fourier sine series f(x) =
∑∞

1 bn sin(nπx/l) for 0 ≤ x ≤ l.

(a) Show that

2

l

∫ l

0

f(x)2dx =
∞
∑

1

b2n.

(Hint: Recall the inner product 〈f, g〉 =
∫ l

0
f(x)g(x)dx. Think about ||f || in two

ways.)

(b) Apply part (a) to the series you computed in Problem 3 to show that

π2

6
= 1 +

1

22
+

1

32
+ · · · =

∞
∑

n=1

1

n2
.
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28. Applications of PDE’s

Introduction

In this worksheet we consider the heat and wave equations and conclude with a review of
linear algebra.

Problems

1. Find the steady state temperature in a bar that is insulated at the end x = 0 and
held at the constant temperature 0 at the end x = l. (How does the word “insulated”
translate into a boundary condition?)

2. Find the steady state temperature in the bar of the previous exercise if the bar is
insulated at the end x = 0 and held at the constant temperature T at the end x = l.

3. A steel wire 5 feet in length is stretched by a tensile force of 50 pounds. The wire
weighs 0.026 pounds per linear foot.

(a) Find the velocity of propagation of the transverse waves in the wire.

(b) Find the natural frequencies of the vibration.

(c) How do the natural frequencies change when the tension is changed?

4. This problem illustrates the method of variation of parameters. Suppose you are trying
to solve the differential equation x′ = Ax + b(t), and you already know that x1 and
x2 are linearly independent solutions to the homogeneous ODE x′ = Ax. Form the
matrix whose columns are x1 and x2:

Φ =





| |
x1 x2

| |





In Math 1B, you learned a method of variation of parameters for solving inhomogeneous
differential equations. Starting with solutions x1 and x2 to the corresponding homo-
geneous equation you guess that there exist functions u1 and u2 such that u1x1 + u2x2

is a solution to the inhomogeneous equation. The difficult step is finding u1 and u2.

(a) Show that the general solution of x′ = Ax is given by x = Φc where c =

[

c1
c2

]

is

an arbitrary constant vector.
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(b) Here we mimic the variation of parameters procedure and guess that something

of the form Φu solves the equation x′ = Ax+ b, where u =

[

u1(t)
u2(t)

]

. Why is this

analogous to what you did in 1B?

(c) Show that for any u,
(Φu)′ = A(Φu) +Φu′.

(d) Conclude, therefore, that Φu is what we are looking for exactly when Φu′ = b(t).

(e) Show that Φu is a solution of x′ = Ax+ b, where u =
∫

[Φ(t)]−1b(t) dt.

(f) Find a solution of

x′ =

[

2 −1
3 −2

]

x+

[

0
4t

]

.


