On the optimal density of sphere packings in \mathbb{E}^{8} and the uniqueness theorem on finite packings with optimal density

Wu-Yi Hsiang

Abstract:Let $P_{\text {be a finite cluster of unit spheres and }} P^{*}$ be an extension of $P_{\text {which makes all the }}$ $S_{j} \in \mathcal{P}\left\{C\left(S_{j}, \mathcal{P}^{*}\right)\right\}$
local cells (i.e. Voronoi cells) of
, bounded. Then, it is natural to

$$
\rho\left(\mathcal{P}, P^{*}\right)
$$

define the relative density
by setting

$$
\begin{equation*}
\rho\left(\mathcal{P}, \mathcal{P}^{*}\right)=\sum_{S_{j} \in \mathcal{P}} \operatorname{vol}\left(S_{j}\right) / \sum_{S_{j} \in \mathcal{P}} \operatorname{vol} C\left(S_{j}, \mathcal{P}^{*}\right) \tag{1}
\end{equation*}
$$

$$
\left\{\rho\left(\mathcal{P}, \mathcal{P}^{*}\right)\right\}
$$

and to define the intrinsic density of P to be the least upper bound of for all possible extensions of $P_{\text {, namely }}$

$$
\begin{align*}
\rho(\mathcal{P}) & =\text { l.u.b. }\left\{\rho\left(\mathcal{P}, \mathcal{P}^{*}\right), \mathcal{P} \subset \mathcal{P}^{*}\right\} \tag{2}\\
\mathcal{P} & =\{S\}
\end{align*}
$$

In the very special case that consists of a single sphere, the above intrinsic density $\rho(\{S\})$
is exactly the optimal local density of sphere packings in $\mathbb{1}^{8}$. Anyhow, the following are two fundamental problems in the study of sphere packings in \mathbb{N}^{8}, namely

Problem 1:What is the optimal local density in \mathbb{N}^{8} ? and what are the geometric structures of those tightest local packings (i.e. the ones with optimal local density)?

Problem 2:What is the optimal intrinsic density for cluster of unit spheres in $\mathbb{1}^{8}$ of a given cardinality, namely

$$
\begin{equation*}
\rho_{N}=\text { l.u.b. }\{p(\mathcal{P}), \#(\mathcal{P})=N\}=\text { ? } \tag{3}
\end{equation*}
$$

$$
\rho(\mathcal{P})=\rho_{N}
$$

Moreover, what are the geometric structures of those $\mathrm{N}_{\text {-clusters with }}$

It is a remarkable, pleasant surprise that both of the above two problems have clean-cut solutions and the strongest possible uniqueness theorems, namely

$$
\pi^{4} / 384
$$

Theorem I:The optimal local density of sphere packings in \mathbb{N}^{8} is equal to
.The local

$$
\mathcal{L}\left(S_{0}\right) \quad \pi^{4} / 384 \quad \mathcal{L}\left(S_{0}\right)
$$

density of a local packing
is equal to
when and only when
is

$$
E_{8}
$$

isometric to the local packing type of the lattice packing associated to the root lattice of (i.e. the exceptional Lie group of rank 8).

$$
\begin{equation*}
\rho(\mathcal{P}) \leq \frac{\pi^{4}}{384} \tag{4}
\end{equation*}
$$

E_{8}
-lattice packing (up and equality holds when and only when is isometric to a finite cluster in the -lattice pater a
to a scaling). [A finite packing is called a cluster if any pair of them can be linked by a chain with consecutive center-distances less than $2 \sqrt{ } 2$-time of the radius.]

The purpose of this talk is to present the proofs of the above two theorems.
[In fact, Theorem II follows readily from Theorem I.]

