Math 115
Second Midterm Exam
Professor K. A. Ribet October 28, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. Don't worry too much about simplifying arithmetical expressions; " $3 \cdot 5+1$ " is the same answer as " 16 " in most contexts.

1 (5 points). Suppose that n and m are positive integers, that p is a prime and that α is a non-negative integer. Assume that n is divisible by p^{α}, that m is prime to p and that $F=\frac{n}{m}$ is an integer. Show that F is divisible by p^{α}.

2 (6 points). Let $f(x)$ be a polynomial with integer coefficients that satisfies $f(1)=f^{\prime}(1)=3$. Calculate the remainder when $f(-18)$ is divided by 19^{2}.

3 (5 points). Determine the number of solutions to the congruence $x^{2}+x+1 \equiv 0$ $\bmod 7^{11}$.

4 (6 points). Find an integer $n \geq 1$ so that $a^{3 n} \equiv a \bmod 85$ for all integers a that are divisible neither by 5 nor by 17 .

5 (6 points). Find the number of solutions mod 120 to the system of congruences $x \equiv \begin{cases}2 & \bmod 4 \\ 3 & \bmod 5 . \\ 4 & \bmod 6\end{cases}$

6 (7 points). If $m=15709$, we have $2^{(m-1) / 2} \equiv 1 \bmod m$ and $2^{(m-1) / 4} \equiv 2048$ $\bmod m$. With the aid of these congruences, one can find quite easily a positive divisor of m that is neither 1 nor m. Explain concisely: how to find such a divisor, and why your method works.

