Professor K. A. Ribet September 23, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31 .
2 (4 points). Use the identity $27^{2}-8 \cdot 91=1$ to find an integer x such that $27 x=14 \bmod 91$.

3 (4 points). Find all prime numbers p such that $p^{2}+2$ is prime.

4 (5 points). Suppose that $a x+b y=17$, where a, b, x and y are integers. Show that the numbers $\operatorname{gcd}(a, b)$ and $\operatorname{gcd}(x, y)$ are divisors of 17 . Decide which, if any, of the following four possibilities can occur:
(i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=1$;
(ii) $\operatorname{gcd}(a, b)=17$ and $\operatorname{gcd}(x, y)=1$;
(iii) $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(x, y)=17$;
(iv) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=17$.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that $(n-1)$! and n are not relatively prime. Prove that the congruence $(n-1)!\equiv-1 \bmod n$ is false.

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \bmod 4$.
7 (6 points). Show that $x^{8} \equiv 1 \bmod 20$ if x is an integer that is prime to 20 . Find the integer t such that $t^{9}=760231058654565217 \approx 7.60231 \times 10^{17}$.

