Math 115 First Midterm Exam

Professor K. A. Ribet September 23, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31.

2 (4 points). Use the identity $27^2 - 8 \cdot 91 = 1$ to find an integer x such that $27x = 14 \mod 91$.

3 (4 points). Find all prime numbers p such that $p^2 + 2$ is prime.

4 (5 points). Suppose that ax + by = 17, where a, b, x and y are integers. Show that the numbers gcd(a, b) and gcd(x, y) are divisors of 17. Decide which, if any, of the following four possibilities can occur:

- (i) gcd(a, b) = gcd(x, y) = 1;
- (ii) gcd(a, b) = 17 and gcd(x, y) = 1;
- (iii) gcd(a, b) = 1 and gcd(x, y) = 17;
- (iv) gcd(a, b) = gcd(x, y) = 17.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that (n-1)! and n are not relatively prime. Prove that the congruence $(n-1)! \equiv -1 \mod n$ is false.

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \mod 4$.

7 (6 points). Show that $x^8 \equiv 1 \mod 20$ if x is an integer that is prime to 20. Find the integer t such that $t^9 = 760231058654565217 \approx 7.60231 \times 10^{17}$.