Math 115
 Final Exam

Professor K. A. Ribet December 14, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

Each question is worth 6 points.

1. Let n be an integer greater than 1 . Let p be the smallest prime factor of n. Show that there are integers a and b so that $a n+b(p-1)=1$.
2. Using the identity $27^{2}-8 \cdot 91=1$, describe the set of all integers x that satisfy the two congruences $x \equiv\left\{\begin{array}{ll}35 & \bmod 91 \\ 18 & \bmod 27\end{array}\right.$.
3. Let $m=2^{2} 3^{3} 5^{5} 7^{7} 11^{11}$. Find the number of solutions to $x^{2} \equiv x \bmod m$.
4. Calculate $\left(\frac{-30}{p}\right)$, where p is the prime 101. Justify each equality that you use.
5. Write $2+\sqrt{8}$ as an infinite simple continued fraction.
6. Find the number of primitive roots $\bmod p^{2}$ when p is the prime 257 .
7. Express the continued fraction $\langle 6,6,6, \ldots\rangle$ in the form $a+b \sqrt{d}$, with a and b rational numbers and d a positive non-square integer.
8. Suppose that $p=a^{2}+b^{2}$, where p is an odd prime number and a is odd. Show that $\left(\frac{a}{p}\right)=+1$. (Use the Jacobi symbol.)
9. Let n be an integer. Show that n is a difference of two squares (i.e., $n=x^{2}-y^{2}$ for some $x, y \in \mathbf{Z}$) if and only if n is either odd or divisible by 4 .
10. Let n be an integer greater than 1 . Prove that 2^{n} is not congruent to 1 $\bmod n$.
