F295 Haas and 1 Leconte 3:40-5:00 PM

Your Name: \qquad TA: \qquad

Please check that you have all 7 pages of this exam booklet. Write your name on each page. As you turn through the pages, look for the easy questions - do them first. This exam is 80 minutes long.

- This is a closed-book exam: no books, notes or calculators are allowed.
- You need not simplify your answers unless you are specifically asked to do so.
- It is essential to write legibly and show your work.
- If your work is absent or illegible, and your answer is not perfectly correct, then no partial credit can be awarded.
- Completely correct answers which are given without justification may receive little or no credit.

Problem	Maximum	Your Score
1	10	
$2 \mathrm{a}-\mathrm{b}$	10	
2 c and 3	11	
4	10	
5	8	
6	11	
Total	$\mathbf{6 0}$	

At the conclusion of the exam, hand in this exam paper to your TA.
\qquad
1a (4 points). Find the remainder when 2^{55} is divided by the prime number 53.

1b (6 points). Suppose that f and g are functions $S \rightarrow S$, where S is the set of positive integers less than 10^{3}. If the composition $f \circ g$ is $1-1$ and onto, must f and g be 1-1 and onto? (Give a short proof or a counterexample.)

Your Name: \qquad

In the following problems, it may be useful to know that $203 \cdot 83-39 \cdot 432=1$.
2a (5 points). Find an integer x such that $83 x \equiv 1 \bmod 432$.

2b (5 points). Find an integer y such that $39 y \equiv 4 \bmod 203$.

Your Name: \qquad

2c (6 points). Find an integer z such that $z \equiv 2 \bmod 39$ and $z \equiv 3 \bmod 203$.

3 (5 points). Can you conclude that $A=B$ if A, B and C are sets such that $A \cap C=B \cap C$ and $A \cup C=B \cup C$? (Explain why or why not.)

Your Name:
4 (10 points). Numbers A_{n} are defined as follows:

$$
A_{0}=0 ; \quad A_{1}=1 ; \quad A_{n}=5 A_{n-1}-6 A_{n-2} \text { for } n \geq 2 .
$$

Prove that $A_{n}=3^{n}-2^{n}$ for all $n \geq 0$.

Your Name: \qquad
5 (8 points). Suppose that $f(x)=5^{x}$ and $g(x)=10^{x}$. Decide whether each of the following statements is true. (Logarithms are to the base e.)
(a) $\quad f(x)=O(g(x))$.
(b) $g(x)=O(f(x))$.
(c) $\log g(x)=O(\log f(x))$.
(d) $f(x)=O(\log g(x))$.

Explain your reasoning.

Your Name: \qquad
6a (6 points). Find an integer d such that $\left(M^{11}\right)^{d} \equiv M \bmod 55$ for all integers M such that $\operatorname{gcd}(M, 55)=1$.

6b (5 points). Determine whether $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ is a tautology.

