Mathematics 55 First Midterm Exam Professor K. A. Ribet September 25, 1997

F295 Haas and 1 Leconte 3:40–5:00 PM

Your Name: _____

TA: _____

Please check that you have all 7 pages of this exam booklet. Write your name on each page. As you turn through the pages, look for the easy questions—do them first. This exam is 80 minutes long.

- This is a closed-book exam: no books, notes or calculators are allowed.
- You need not simplify your answers unless you are specifically asked to do so.
- It is essential to write legibly and *show your work*.
- If your work is absent or illegible, and your answer is not perfectly correct, then no partial credit can be awarded.
- Completely correct answers which are given without justification may receive little or no credit.

Problem	Maximum	Your Score
1	10	
2a-b	10	
2c and 3	11	
4	10	
5	8	
6	11	
Total	60	

At the conclusion of the exam, hand in this exam paper to your TA.

1a (4 points). Find the remainder when 2^{55} is divided by the prime number 53.

1b (6 points). Suppose that f and g are functions $S \to S$, where S is the set of positive integers less than 10^3 . If the composition $f \circ g$ is 1-1 and onto, must f and g be 1-1 and onto? (Give a short proof or a counterexample.)

In the following problems, it may be useful to know that $203 \cdot 83 - 39 \cdot 432 = 1$.

2a (5 points). Find an integer x such that $83x \equiv 1 \mod 432$.

2b (5 points). Find an integer y such that $39y \equiv 4 \mod 203$.

2c (6 points). Find an integer z such that $z \equiv 2 \mod 39$ and $z \equiv 3 \mod 203$.

3 (5 points). Can you conclude that A = B if A, B and C are sets such that $A \cap C = B \cap C$ and $A \cup C = B \cup C$? (Explain why or why not.)

4 (10 points). Numbers A_n are defined as follows:

$$A_0 = 0;$$
 $A_1 = 1;$ $A_n = 5A_{n-1} - 6A_{n-2}$ for $n \ge 2.$

Prove that $A_n = 3^n - 2^n$ for all $n \ge 0$.

5 (8 points). Suppose that $f(x) = 5^x$ and $g(x) = 10^x$. Decide whether each of the following statements is true. (Logarithms are to the base e.)

(a)
$$f(x) = O(g(x)).$$

(b) $g(x) = O(f(x)).$
(c) $\log g(x) = O(\log f(x)).$
(d) $f(x) = O(\log g(x)).$

Explain your reasoning.

6a (6 points). Find an integer d such that $(M^{11})^d \equiv M \mod 55$ for all integers M such that gcd(M, 55) = 1.

6b (5 points). Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.