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Problem 1 (18 points: 2 each). Answer TRUE or FALSE (a justification is not required).

a) If W is any subspace of a finite-dimensional inner product space V , then V = W ⊕W⊥.

b) The set {A ∈ Mn×n(C) : det(A) = 0} is a subspace of the vector space Mn×n(C).

c) If A ∈ Mn×n(R) is diagonalizable, then the characteristic polynomial of A splits.

d) For all matrices A ∈ Mn×n(C) with n distinct eigenvalues λ1, . . . ,λn the eigenspace Eλk
is equal

to the generalized eigenspace Kλk
for all 1 ≤ k ≤ n.

e) For all A, B ∈ Mn×n(R) with det(A) = 0 it holds rank(AB) < rank(B).

f) Let V be a finite-dimensional real inner product space. Every normal operator on V is self-adjoint.

g) The largest eigenvalue of a symmetric matrix A ∈ Mn×n(R) is given by max{xtAx : ‖x‖ = 1}.

h) The function H : R2 × R2 → R, H

((
a11

a21

)
,

(
a12

a22

))
= det

(
a11 a12

a21 a22

)
is a bilinear form.

i) If T is a linear operator on a finite-dimensional inner product space, then R(T ∗)⊥ = N(T ).
Solution to Problem 1:

a) TRUE

b) FALSE

c) TRUE

d) TRUE

e) FALSE

f) FALSE

g) TRUE

h) TRUE

i) TRUE

Points (Problem 1)
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Problem 2 (14 points: 2+4+8).

a) Let W be a subset of a finite-dimensional inner product space V . Provide the definition of the
orthogonal complement W⊥ of W .

b) Consider V = R2 with the standard inner product and v =

(
1
1

)
. Compute {v}⊥ and the point

w0 ∈ span{v} which is closest to x =

(
1
3

)
, i.e. ‖w0 − x‖ ≤ ‖w − x‖ for all w ∈ span{v}.

c) Let V be a finite-dimensional inner product space and W1 and W2 be subspaces of V . Recall from
the lecture that their sum is defined as W1 + W2 := {w1 + w2 : w1 ∈ W1, w2 ∈ W2}. Prove that
(W1 + W2)⊥ = W⊥

1 ∩W⊥
2 .

Solution to Problem 2:

a) It is W⊥ := {v ∈ V : 〈v, w〉 = 0 for all w ∈ W}.

b) It is {(
1
1

)}⊥

= span

{(
−1
1

)}

and
w0 =

1

2

〈(
1
3

)
,

(
1
1

)〉 (
1
1

)
=

(
2
2

)
.

c) It is x ∈ (W1 + W2)⊥ if and only if 〈x, w〉 = 0 for all w ∈ W1 + W2. Therefore,

(W1 + W2)
⊥ = {x ∈ V : 〈x, w1 + w2〉 = 0 for all w1 ∈ W1 and all w2 ∈ W2}. (1)

On the one hand, if x ∈ (W1 + W2)⊥ it follows from (1) by setting w2 = 0 that 〈x, w1〉 = 0 for all
w1 ∈ W1. Similarly, by choosing w1 = 0 it follows 〈x, w2〉 = 0 for all w2 ∈ W2. This shows that
x ∈ W⊥

1 and x ∈ W⊥
2 . In other words x ∈ W⊥

1 ∩W⊥
2 .

On the other hand, if x ∈ W⊥
1 ∩ W⊥

2 , then 〈x, w1〉 = 0 for all w1 ∈ W1 and 〈x, w2〉 = 0 for all
w2 ∈ W2. Therefore 〈x, w1 + w2〉 = 0 for all w1 ∈ W1 and w2 ∈ W2. By (1) it follows that
x ∈ (W1 + W2)⊥.
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Problem 3 (14 points: 7+2+2+3). Consider the following real n× n matrix A ∈ Mn×n(R)

A =




1 0 0
0 1 −1
0 −1 1





and the associated linear transformation LA : R3 → R3, LAv = Av. As usual, we equip R3 with the
standard (Euclidean) inner product and the corresponding norm.

a) Compute the rank rank(A), nullity dim N(LA), determinant det(A) and all eigenvalues of A.

b) Compute a basis of the null space of LA.

c) Is A an orthogonal matrix? Justify your answer.

d) Decide whether or not there exists an ordered orthonormal basis for R3 consisting of eigenvectors
of A. Justify your answer.

Solution to Problem 3:

a) Because the first and the second column of A are linearly independent and the sum of the second
column and third column is the zero vector it follows that rank(A) = 2.

By the Dimension Theorem it follows that dim N(LA) = 3− 2 = 1.

The eigenvalues are the zeros of the characteristic polynomial

f(t) = det




1− t 0 0

0 1− t −1
0 −1 1− t



 = t(1− t)(t− 2),

which means the eigenvalues are 0, 1, 2.

In particular, the above computation for t = 0 implies det(A) = 0.

b) By the considerations above v =




0
1
1



 satifies Av = 0 and, because the dimension of the null

space is exactly one it follows that {v} is a basis for N(LA).

c) The matrix A is not orthogonal. If A was orthogonal every eigenvalue λ would satisfy |λ| = 1
which contradicts the existence of the eigenvalue 2.

d) Since A is symmetric we can apply the Spectral Theorem and it follows that there exists an ordered
orthonormal basis for R3 consisting of eigenvectors of A.
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Problem 4 (10 points: 2+8).

a) Let T : V → V be a linear operator on a vector space V over the field F . The scalar λ ∈ F is an
eigenvalue of T if and only if . . . (complete the statement)

b) Is the following matrix A ∈ M3×3(R) diagonalizable (over the field R)?

A =




3 −1 1
−1 3 1
0 0 4





If possible, compute an ordered basis for R3 consisting of eigenvectors of A.

Solution to Problem 4:

a) . . . there exists a nonzero vector v ∈ V such that Tv = λv.

b) First, we compute all eigenvalues:

det




3− t −1 1
−1 3− t 1
0 0 4− t



 = (4− t)((3− t)2 − 1) = (4− t)2(2− t)

Therefore the eigenvalues are λ1 = 2 with algebraic multiplicity m1 = 1 and λ2 = 4 with algebraic
multiplicity m2 = 2.

Second, we compute bases for the eigenspaces. For λ1 = 2 we solve



1 −1 1 0
−1 1 1 0
0 0 2 0



 and find E2 = span









1
1
0








 .

For λ2 = 4 we solve



−1 −1 1 0
−1 −1 1 0
0 0 0 0



 and find E4 = span









1
−1
0



 ,




0
1
1








 .

As a consequence, the matrix A is diagonalizable and








1
1
0



 ,




1
−1
0



 ,




0
1
1










is an ordered basis for R3 which consists of eigenvectors of A.
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Points (Problem 4)
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Problem 5 (12 points: 4+2+6).

a) Let T : P3(R) → P3(R), T (f(x)) = f ′(x). Determine the T -cyclic subspace generated by the
polynomial p(x) = x2 + x + 1.

b) Let A ∈ Mn×n(C) and f(t) be the characteristic polynomial of A. Which of the following state-
ments is a matrix version of the Caley-Hamilton Theorem for A? [Check the box if true]

It is f(λ) = 0 ∈ C for some λ ∈ C if and only if λ = 0.

X It holds f(A) = 0, where 0 ∈ Mn×n(C) denotes the zero matrix.

f(t) is the zero polynomial.

c) Let A ∈ M2×2(C) be a matrix such that λ1, λ2 ∈ C are the (not necessarily distinct) eigenvalues.

i) Prove that A is invertible if and only if λ1λ2 += 0.

ii) Prove that if λ1 + λ2 = 0, then A2 =

(
−λ1λ2 0

0 −λ1λ2

)
.

Solution to Problem 5 a) and c):

a) The T -cyclic subspace generated by p(x) is given by

span{p(x), T (p(x)), T 2(p(x)), . . .} = span{x2 + x + 1, 2x + 1, 2} = P2(R).

c) Since A has exactly the two eigenvalues λ1 and λ2 the characteristic polynomial must be of the
form

f(t) = det(A− tI2) = (λ1 − t)(λ2 − t) = λ1λ2 − (λ1 + λ2)t + t2.

This implies det(A) = f(0) = λ1λ2. Because A is invertible if and only if det(A) += 0 the first
claim follows. If λ1 + λ2 = 0 the second claim follows from the Caley-Hamilton Theorem which
asserts that

0 = f(A) = λ1λ2I2 + A2.
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Problem 6 (20 points: 4+4+2+4+6). Let V be a finite-dimensional inner product space over the field C
and let T : V → V be a linear transformation.

a) Provide the defining property for the adjoint T ∗ : V → V and calculate the adjoint of T : C2 → C2,

T

(
a
b

)
=

(
−b
a

)
, where C2 is equipped with the standard inner product.

b) When is T called self-adjoint? State the definition and give an example.

c) When is T called normal? Give the definition and an example of a normal and non-self-adjoint T .

d) Prove that if S, T : V → V both are self-adjoint linear transformations such that ST = TS, then
ST is a self-adjoint linear transformation.

e) Prove that if T is self-adjoint, then ‖T (v) + iv‖2 = ‖T (v)‖2 + ‖v‖2 for all v ∈ V .

Solution to Problem 6:

a) The defining property of the adjoint T ∗ : V → V is

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ V.

The adjoint for the given T is T ∗ : C2 → C2, T ∗
(

a
b

)
=

(
b
−a

)
.

b) T is self-adjoint if and only T = T ∗. An example is the identity I : C2 → C2.

c) T is normal if and only TT ∗ = T ∗T . An example of a normal and non-self-adjoint operator is T
defined in a).

d) By the properties of the adjoint we compute

(ST )∗ = T ∗S∗ = TS = TS,

were we used the self-adjointness of S and T in the second step and the assumption that S and T
commute in the last step.

e) For every v ∈ V we calculate, using the properties of the inner product,

〈T (v) + iv, T (v) + iv〉 = 〈T (v), T (v)〉+ i〈v, T (v)〉 − i〈T (v), v〉 − i2〈v, v〉.

By the definition of the norm and i2 = −1 it remains to show that

i〈v, T (v)〉 − i〈T (v), v〉 = 0,

which is equivalent to the fact that

〈v, T (v)〉 = 〈T (v), v〉.

This is true because T is self-adjoint.

Points (Problem 5)
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Points (Problem 6)
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Problem 7 (12 points: 2+4+6).

a) Which of the following formulae defines the product AB of two matrices A, B ∈ Mn×n(C)?
[Check the box if true]

(AB)ij =
n∑

k=1

AkiBjk (1 ≤ i, j ≤ n)

(AB)ij =
n∑

k=1

AikBjk (1 ≤ i, j ≤ n)

X (AB)ij =
n∑

k=1

AikBkj (1 ≤ i, j ≤ n)

b) We define the trace tr(A) of a matrix A ∈ Mn×n(C) to be the sum of the diagonal entries, that is
tr(A) :=

∑n
i=1 Aii. Prove that tr(AB) = tr(BA) for all A, B ∈ Mn×n(C).

c) Let A ∈ Mn×n(C) be a matrix with the distinct eigenvalues λ1, . . . ,λk ∈ C and corresponding
algebraic multiplicities m1, . . . ,mk. Prove that tr(A) =

∑k
i=1 miλi.

[Hint: Find a matrix which is similar to A and for which this formula is obvious.]

Solution to Problem 7 b) and c):

b) We compute

tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

n∑

k=1

AikBki =
n∑

k=1

n∑

i=1

BkiAik =
n∑

k=1

(AB)kk = tr(BA).

c) For the matrix A we know from the lecture that there exists a Jordan canonical form J such that
A = Q−1JQ for some invertible matrix Q. The diagonal entries of J are exactly the eigenvalues
of A and each eigenvalue λi occurs exactly mi times, since mi is the dimension of the generalized
eigenspace corresponding to λi. This implies tr(J) =

∑k
i=1 miλi. By Part b) it follows

tr(A) = tr(Q−1JQ) = tr(JQ−1Q) = tr(J) =
k∑

i=1

miλi

which proves the claim.
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Extra space to complement your solution to Problem :

End of extra space


