Math 110, Section 4, Fall 2008, Final Exam
Instructor: Sebastian Herr
University of California, Berkeley

Please enter the following information in capital letters:

Last Name: \qquad First Name: \qquad

ID: \qquad

The Final Exam consists of 7 problems. The maximal number of points is 100 .
You may use Page 2 for notes or auxiliary calculations which will not be graded and you cannot refer to the results on Page 2 in your solutions. All pages must be submitted (do not unstaple).

Please enter your solution to Problem 1 on Page 3. Please begin your solutions to Problems 2-7 on the even page just below the statement of the problem and - if necessary - continue your solution on the subsequent odd page.

If you need extra space for a solution to one of the problems, you may use Page 16. In this case you must provide the problem number in the top line of Page 16.

Please use a pen with black or blue ink. Any other devices or documents, such as calculators, lecture notes, etc. must not be used.

Problem	1	2	3	4	5	6	7
Points							

Total

Additional space for your notes (not graded):

Problem 1 (18 points: 2 each). Answer TRUE or FALSE (a justification is not required).
a) If W is any subspace of a finite-dimensional inner product space V, then $V=W \oplus W^{\perp}$.
b) The set $\left\{A \in M_{n \times n}(\mathbb{C}): \operatorname{det}(A)=0\right\}$ is a subspace of the vector space $M_{n \times n}(\mathbb{C})$.
c) If $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable, then the characteristic polynomial of A splits.
d) For all matrices $A \in M_{n \times n}(\mathbb{C})$ with n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ the eigenspace $E_{\lambda_{k}}$ is equal to the generalized eigenspace $K_{\lambda_{k}}$ for all $1 \leq k \leq n$.
e) For all $A, B \in M_{n \times n}(\mathbb{R})$ with $\operatorname{det}(A)=0$ it holds $\operatorname{rank}(A B)<\operatorname{rank}(B)$.
f) Let V be a finite-dimensional real inner product space. Every normal operator on V is self-adjoint.
g) The largest eigenvalue of a symmetric matrix $A \in M_{n \times n}(\mathbb{R})$ is given by $\max \left\{x^{t} A x:\|x\|=1\right\}$.
h) The function $H: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, H\left(\binom{a_{11}}{a_{21}},\binom{a_{12}}{a_{22}}\right)=\operatorname{det}\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ is a bilinear form.
i) If T is a linear operator on a finite-dimensional inner product space, then $R\left(T^{*}\right)^{\perp}=N(T)$.

Solution to Problem 1:

a) TRUE
b) FALSE
c) TRUE
d) TRUE
e) FALSE
f) FALSE
g) TRUE
h) TRUE
i) TRUE

Problem 2 (14 points: $\mathbf{2 + 4 + 8)}$.

a) Let W be a subset of a finite-dimensional inner product space V. Provide the definition of the orthogonal complement W^{\perp} of W.
b) Consider $V=\mathbb{R}^{2}$ with the standard inner product and $v=\binom{1}{1}$. Compute $\{v\}^{\perp}$ and the point $w_{0} \in \operatorname{span}\{v\}$ which is closest to $x=\binom{1}{3}$, i.e. $\left\|w_{0}-x\right\| \leq\|w-x\|$ for all $w \in \operatorname{span}\{v\}$.
c) Let V be a finite-dimensional inner product space and W_{1} and W_{2} be subspaces of V. Recall from the lecture that their sum is defined as $W_{1}+W_{2}:=\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\}$. Prove that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$.

Solution to Problem 2:

a) It is $W^{\perp}:=\{v \in V:\langle v, w\rangle=0$ for all $w \in W\}$.
b) It is

$$
\left\{\binom{1}{1}\right\}^{\perp}=\operatorname{span}\left\{\binom{-1}{1}\right\}
$$

and

$$
w_{0}=\frac{1}{2}\left\langle\binom{ 1}{3},\binom{1}{1}\right\rangle\binom{ 1}{1}=\binom{2}{2} .
$$

c) It is $x \in\left(W_{1}+W_{2}\right)^{\perp}$ if and only if $\langle x, w\rangle=0$ for all $w \in W_{1}+W_{2}$. Therefore,

$$
\begin{equation*}
\left(W_{1}+W_{2}\right)^{\perp}=\left\{x \in V:\left\langle x, w_{1}+w_{2}\right\rangle=0 \text { for all } w_{1} \in W_{1} \text { and all } w_{2} \in W_{2}\right\} \tag{1}
\end{equation*}
$$

On the one hand, if $x \in\left(W_{1}+W_{2}\right)^{\perp}$ it follows from (1) by setting $w_{2}=0$ that $\left\langle x, w_{1}\right\rangle=0$ for all $w_{1} \in W_{1}$. Similarly, by choosing $w_{1}=0$ it follows $\left\langle x, w_{2}\right\rangle=0$ for all $w_{2} \in W_{2}$. This shows that $x \in W_{1}^{\perp}$ and $x \in W_{2}^{\perp}$. In other words $x \in W_{1}^{\perp} \cap W_{2}^{\perp}$.
On the other hand, if $x \in W_{1}^{\perp} \cap W_{2}^{\perp}$, then $\left\langle x, w_{1}\right\rangle=0$ for all $w_{1} \in W_{1}$ and $\left\langle x, w_{2}\right\rangle=0$ for all $w_{2} \in W_{2}$. Therefore $\left\langle x, w_{1}+w_{2}\right\rangle=0$ for all $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. By (1) it follows that $x \in\left(W_{1}+W_{2}\right)^{\perp}$.

Problem 3 (14 points: $\mathbf{7 + 2 + 2 + 3}$). Consider the following real $n \times n$ matrix $A \in M_{n \times n}(\mathbb{R})$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

and the associated linear transformation $L_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L_{A} v=A v$. As usual, we equip \mathbb{R}^{3} with the standard (Euclidean) inner product and the corresponding norm.
a) Compute the $\operatorname{rank} \operatorname{rank}(A)$, nullity $\operatorname{dim} N\left(L_{A}\right)$, determinant $\operatorname{det}(A)$ and all eigenvalues of A.
b) Compute a basis of the null space of L_{A}.
c) Is A an orthogonal matrix? Justify your answer.
d) Decide whether or not there exists an ordered orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A. Justify your answer.

Solution to Problem 3:

a) Because the first and the second column of A are linearly independent and the sum of the second column and third column is the zero vector it follows that $\operatorname{rank}(A)=2$.
By the Dimension Theorem it follows that $\operatorname{dim} N\left(L_{A}\right)=3-2=1$.
The eigenvalues are the zeros of the characteristic polynomial

$$
f(t)=\operatorname{det}\left(\begin{array}{ccc}
1-t & 0 & 0 \\
0 & 1-t & -1 \\
0 & -1 & 1-t
\end{array}\right)=t(1-t)(t-2)
$$

which means the eigenvalues are $0,1,2$.
In particular, the above computation for $t=0$ implies $\operatorname{det}(A)=0$.
b) By the considerations above $v=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ satifies $A v=0$ and, because the dimension of the null space is exactly one it follows that $\{v\}$ is a basis for $N\left(L_{A}\right)$.
c) The matrix A is not orthogonal. If A was orthogonal every eigenvalue λ would satisfy $|\lambda|=1$ which contradicts the existence of the eigenvalue 2.
d) Since A is symmetric we can apply the Spectral Theorem and it follows that there exists an ordered orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A.

Problem 4 (10 points: 2+8).

a) Let $T: V \rightarrow V$ be a linear operator on a vector space V over the field F. The scalar $\lambda \in F$ is an eigenvalue of T if and only if ... (complete the statement)
b) Is the following matrix $A \in M_{3 \times 3}(\mathbb{R})$ diagonalizable (over the field \mathbb{R})?

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 3 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

If possible, compute an ordered basis for \mathbb{R}^{3} consisting of eigenvectors of A.

Solution to Problem 4:

a) \ldots there exists a nonzero vector $v \in V$ such that $T v=\lambda v$.
b) First, we compute all eigenvalues:

$$
\operatorname{det}\left(\begin{array}{ccc}
3-t & -1 & 1 \\
-1 & 3-t & 1 \\
0 & 0 & 4-t
\end{array}\right)=(4-t)\left((3-t)^{2}-1\right)=(4-t)^{2}(2-t)
$$

Therefore the eigenvalues are $\lambda_{1}=2$ with algebraic multiplicity $m_{1}=1$ and $\lambda_{2}=4$ with algebraic multiplicity $m_{2}=2$.
Second, we compute bases for the eigenspaces. For $\lambda_{1}=2$ we solve

$$
\left(\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right) \text { and find } E_{2}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

For $\lambda_{2}=4$ we solve

$$
\left(\begin{array}{ccc|c}
-1 & -1 & 1 & 0 \\
-1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and find } E_{4}=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

As a consequence, the matrix A is diagonalizable and

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

is an ordered basis for \mathbb{R}^{3} which consists of eigenvectors of A.

Problem 5 (12 points: 4+2+6).

a) Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(f(x))=f^{\prime}(x)$. Determine the T-cyclic subspace generated by the polynomial $p(x)=x^{2}+x+1$.
b) Let $A \in M_{n \times n}(\mathbb{C})$ and $f(t)$ be the characteristic polynomial of A. Which of the following statements is a matrix version of the Caley-Hamilton Theorem for A ? [Check the box if true]
\square It is $f(\lambda)=0 \in \mathbb{C}$ for some $\lambda \in \mathbb{C}$ if and only if $\lambda=0$.
X It holds $f(A)=0$, where $0 \in M_{n \times n}(\mathbb{C})$ denotes the zero matrix.
$\square \quad f(t)$ is the zero polynomial.
c) Let $A \in M_{2 \times 2}(\mathbb{C})$ be a matrix such that $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ are the (not necessarily distinct) eigenvalues.
i) Prove that A is invertible if and only if $\lambda_{1} \lambda_{2} \neq 0$.
ii) Prove that if $\lambda_{1}+\lambda_{2}=0$, then $A^{2}=\left(\begin{array}{cc}-\lambda_{1} \lambda_{2} & 0 \\ 0 & -\lambda_{1} \lambda_{2}\end{array}\right)$.

Solution to Problem 5 a) and c):

a) The T-cyclic subspace generated by $p(x)$ is given by

$$
\operatorname{span}\left\{p(x), T(p(x)), T^{2}(p(x)), \ldots\right\}=\operatorname{span}\left\{x^{2}+x+1,2 x+1,2\right\}=P_{2}(\mathbb{R})
$$

c) Since A has exactly the two eigenvalues λ_{1} and λ_{2} the characteristic polynomial must be of the form

$$
f(t)=\operatorname{det}\left(A-t I_{2}\right)=\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right)=\lambda_{1} \lambda_{2}-\left(\lambda_{1}+\lambda_{2}\right) t+t^{2}
$$

This implies $\operatorname{det}(A)=f(0)=\lambda_{1} \lambda_{2}$. Because A is invertible if and only if $\operatorname{det}(A) \neq 0$ the first claim follows. If $\lambda_{1}+\lambda_{2}=0$ the second claim follows from the Caley-Hamilton Theorem which asserts that

$$
0=f(A)=\lambda_{1} \lambda_{2} I_{2}+A^{2}
$$

Problem 6 ($\mathbf{2 0}$ points: $\mathbf{4 + 4 + 2 + 4 + 6) . ~ L e t ~} V$ be a finite-dimensional inner product space over the field \mathbb{C} and let $T: V \rightarrow V$ be a linear transformation.
a) Provide the defining property for the adjoint $T^{*}: V \rightarrow V$ and calculate the adjoint of $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, $T\binom{a}{b}=\binom{-b}{a}$, where \mathbb{C}^{2} is equipped with the standard inner product.
b) When is T called self-adjoint? State the definition and give an example.
c) When is T called normal? Give the definition and an example of a normal and non-self-adjoint T.
d) Prove that if $S, T: V \rightarrow V$ both are self-adjoint linear transformations such that $S T=T S$, then $S T$ is a self-adjoint linear transformation.
e) Prove that if T is self-adjoint, then $\|T(v)+i v\|^{2}=\|T(v)\|^{2}+\|v\|^{2}$ for all $v \in V$.

Solution to Problem 6:

a) The defining property of the adjoint $T^{*}: V \rightarrow V$ is

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \quad \text { for all } x, y \in V .
$$

The adjoint for the given T is $T^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, T^{*}\binom{a}{b}=\binom{b}{-a}$.
b) T is self-adjoint if and only $T=T^{*}$. An example is the identity $I: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$.
c) T is normal if and only $T T^{*}=T^{*} T$. An example of a normal and non-self-adjoint operator is T defined in a).
d) By the properties of the adjoint we compute

$$
(S T)^{*}=T^{*} S^{*}=T S=T S
$$

were we used the self-adjointness of S and T in the second step and the assumption that S and T commute in the last step.
e) For every $v \in V$ we calculate, using the properties of the inner product,

$$
\langle T(v)+i v, T(v)+i v\rangle=\langle T(v), T(v)\rangle+i\langle v, T(v)\rangle-i\langle T(v), v\rangle-i^{2}\langle v, v\rangle .
$$

By the definition of the norm and $i^{2}=-1$ it remains to show that

$$
i\langle v, T(v)\rangle-i\langle T(v), v\rangle=0
$$

which is equivalent to the fact that

$$
\langle v, T(v)\rangle=\langle T(v), v\rangle
$$

This is true because T is self-adjoint.

Problem 7 (12 points: $\mathbf{2 + 4 + 6) .}$

a) Which of the following formulae defines the product $A B$ of two matrices $A, B \in M_{n \times n}(\mathbb{C})$?
[Check the box if true]

$$
\begin{array}{lll}
\square \quad(A B)_{i j} & =\sum_{k=1}^{n} A_{k i} B_{j k} & (1 \leq i, j \leq n) \\
\square & (A B)_{i j} & =\sum_{k=1}^{n} A_{i k} B_{j k} \\
(1 \leq i, j \leq n) \\
\boxed{X} & (A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} & (1 \leq i, j \leq n)
\end{array}
$$

b) We define the trace $\operatorname{tr}(A)$ of a matrix $A \in M_{n \times n}(\mathbb{C})$ to be the sum of the diagonal entries, that is $\operatorname{tr}(A):=\sum_{i=1}^{n} A_{i i}$. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $A, B \in M_{n \times n}(\mathbb{C})$.
c) Let $A \in M_{n \times n}(\mathbb{C})$ be a matrix with the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ and corresponding algebraic multiplicities m_{1}, \ldots, m_{k}. Prove that $\operatorname{tr}(A)=\sum_{i=1}^{k} m_{i} \lambda_{i}$.
[Hint: Find a matrix which is similar to A and for which this formula is obvious.]

Solution to Problem 7 b) and c):

b) We compute

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n}(A B)_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k}=\sum_{k=1}^{n}(A B)_{k k}=\operatorname{tr}(B A) .
$$

c) For the matrix A we know from the lecture that there exists a Jordan canonical form J such that $A=Q^{-1} J Q$ for some invertible matrix Q. The diagonal entries of J are exactly the eigenvalues of A and each eigenvalue λ_{i} occurs exactly m_{i} times, since m_{i} is the dimension of the generalized eigenspace corresponding to λ_{i}. This implies $\operatorname{tr}(J)=\sum_{i=1}^{k} m_{i} \lambda_{i}$. By Part b) it follows

$$
\operatorname{tr}(A)=\operatorname{tr}\left(Q^{-1} J Q\right)=\operatorname{tr}\left(J Q^{-1} Q\right)=\operatorname{tr}(J)=\sum_{i=1}^{k} m_{i} \lambda_{i}
$$

which proves the claim.

Extra space to complement your solution to Problem :

