MATH 110, SECTION 4, FALL 2008, FINAL EXAM INSTRUCTOR: SEBASTIAN HERR UNIVERSITY OF CALIFORNIA, BERKELEY

Please enter the following information in capital letters:

Last Name: _____ First Name: _____

ID: _____

The Final Exam consists of 7 problems. The maximal number of points is 100.

You may use Page 2 for notes or auxiliary calculations which will not be graded and you cannot refer to the results on Page 2 in your solutions. All pages must be submitted (do not unstaple).

Please enter your solution to Problem 1 on Page 3. Please begin your solutions to Problems 2–7 on the even page just below the statement of the problem and – if necessary – continue your solution on the subsequent odd page.

If you need extra space for a solution to one of the problems, you may use Page 16. In this case you must provide the problem number in the top line of Page 16.

Please use a pen with black or blue ink. Any other devices or documents, such as calculators, lecture notes, etc. must not be used.

Problem	1	2	3	4	5	6	7
Points							

Total

Additional space for your notes (<u>not</u> graded):

- a) If W is any subspace of a finite-dimensional inner product space V, then $V = W \oplus W^{\perp}$.
- b) The set $\{A \in M_{n \times n}(\mathbb{C}) : \det(A) = 0\}$ is a subspace of the vector space $M_{n \times n}(\mathbb{C})$.
- c) If $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable, then the characteristic polynomial of A splits.
- d) For all matrices $A \in M_{n \times n}(\mathbb{C})$ with *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ the eigenspace E_{λ_k} is equal to the generalized eigenspace K_{λ_k} for all $1 \le k \le n$.
- e) For all $A, B \in M_{n \times n}(\mathbb{R})$ with det(A) = 0 it holds rank(AB) < rank(B).
- f) Let V be a finite-dimensional real inner product space. Every normal operator on V is self-adjoint.
- g) The largest eigenvalue of a symmetric matrix $A \in M_{n \times n}(\mathbb{R})$ is given by $\max\{x^t A x : ||x|| = 1\}$.
- h) The function $H : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $H\left(\begin{pmatrix}a_{11}\\a_{21}\end{pmatrix}, \begin{pmatrix}a_{12}\\a_{22}\end{pmatrix}\right) = \det\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ is a bilinear form.

i) If T is a linear operator on a finite-dimensional inner product space, then $R(T^*)^{\perp} = N(T)$. Solution to Problem 1:

- a) <u>TRUE</u>
- b) FALSE
- c) <u>TRUE</u>
- d) TRUE
- e) <u>FALSE</u>
- f) <u>FALSE</u>
- g) <u>TRUE</u>
- h) \underline{TRUE}
- i) <u>TRUE</u>

Problem 2 (14 points: 2+4+8).

- a) Let W be a subset of a finite-dimensional inner product space V. Provide the definition of the orthogonal complement W^{\perp} of W.
- b) Consider $V = \mathbb{R}^2$ with the standard inner product and $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Compute $\{v\}^{\perp}$ and the point $w_0 \in \operatorname{span}\{v\}$ which is closest to $x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, i.e. $||w_0 x|| \le ||w x||$ for all $w \in \operatorname{span}\{v\}$.
- c) Let V be a finite-dimensional inner product space and W_1 and W_2 be subspaces of V. Recall from the lecture that their sum is defined as $W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.

Solution to Problem 2:

- a) It is $W^{\perp} := \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \}.$
- b) It is

$$\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}^{\perp} = \operatorname{span} \left\{ \begin{pmatrix} -1\\1 \end{pmatrix} \right\}$$

and

$$w_0 = \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

c) It is $x \in (W_1 + W_2)^{\perp}$ if and only if $\langle x, w \rangle = 0$ for all $w \in W_1 + W_2$. Therefore,

$$(W_1 + W_2)^{\perp} = \{ x \in V : \langle x, w_1 + w_2 \rangle = 0 \text{ for all } w_1 \in W_1 \text{ and all } w_2 \in W_2 \}.$$
(1)

On the one hand, if $x \in (W_1 + W_2)^{\perp}$ it follows from (1) by setting $w_2 = 0$ that $\langle x, w_1 \rangle = 0$ for all $w_1 \in W_1$. Similarly, by choosing $w_1 = 0$ it follows $\langle x, w_2 \rangle = 0$ for all $w_2 \in W_2$. This shows that $x \in W_1^{\perp}$ and $x \in W_2^{\perp}$. In other words $x \in W_1^{\perp} \cap W_2^{\perp}$.

On the other hand, if $x \in W_1^{\perp} \cap W_2^{\perp}$, then $\langle x, w_1 \rangle = 0$ for all $w_1 \in W_1$ and $\langle x, w_2 \rangle = 0$ for all $w_2 \in W_2$. Therefore $\langle x, w_1 + w_2 \rangle = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$. By (1) it follows that $x \in (W_1 + W_2)^{\perp}$.

Problem 3 (14 points: 7+2+2+3). Consider the following real $n \times n$ matrix $A \in M_{n \times n}(\mathbb{R})$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

and the associated linear transformation $L_A : \mathbb{R}^3 \to \mathbb{R}^3$, $L_A v = Av$. As usual, we equip \mathbb{R}^3 with the standard (Euclidean) inner product and the corresponding norm.

- a) Compute the rank rank(A), nullity dim $N(L_A)$, determinant det(A) and all eigenvalues of A.
- b) Compute a basis of the null space of L_A .
- c) Is A an orthogonal matrix? Justify your answer.
- d) Decide whether or not there exists an ordered orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of A. Justify your answer.

Solution to Problem 3:

a) Because the first and the second column of A are linearly independent and the sum of the second column and third column is the zero vector it follows that rank(A) = 2.

By the Dimension Theorem it follows that dim $N(L_A) = 3 - 2 = 1$.

The eigenvalues are the zeros of the characteristic polynomial

$$f(t) = \det \begin{pmatrix} 1-t & 0 & 0\\ 0 & 1-t & -1\\ 0 & -1 & 1-t \end{pmatrix} = t(1-t)(t-2),$$

which means the eigenvalues are 0, 1, 2.

In particular, the above computation for t = 0 implies det(A) = 0.

- b) By the considerations above $v = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$ satisfies Av = 0 and, because the dimension of the null space is exactly one it follows that $\{v\}$ is a basis for $N(L_A)$.
- c) The matrix A is not orthogonal. If A was orthogonal every eigenvalue λ would satisfy $|\lambda| = 1$ which contradicts the existence of the eigenvalue 2.
- d) Since A is symmetric we can apply the Spectral Theorem and it follows that there exists an ordered orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of A.

Problem 4 (10 points: 2+8).

- a) Let $T: V \to V$ be a linear operator on a vector space V over the field F. The scalar $\lambda \in F$ is an *eigenvalue* of T if and only if ... (complete the statement)
- b) Is the following matrix $A \in M_{3\times 3}(\mathbb{R})$ diagonalizable (over the field \mathbb{R})?

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

If possible, compute an ordered basis for \mathbb{R}^3 consisting of eigenvectors of A.

Solution to Problem 4:

- a) ... there exists a nonzero vector $v \in V$ such that $Tv = \lambda v$.
- b) First, we compute all eigenvalues:

$$\det \begin{pmatrix} 3-t & -1 & 1\\ -1 & 3-t & 1\\ 0 & 0 & 4-t \end{pmatrix} = (4-t)((3-t)^2 - 1) = (4-t)^2(2-t)$$

Therefore the eigenvalues are $\lambda_1 = 2$ with algebraic multiplicity $m_1 = 1$ and $\lambda_2 = 4$ with algebraic multiplicity $m_2 = 2$.

Second, we compute bases for the eigenspaces. For $\lambda_1 = 2$ we solve

$$\left(\begin{array}{ccc|c} 1 & -1 & 1 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{array}\right) \text{ and find } E_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

For $\lambda_2 = 4$ we solve

$$\begin{pmatrix} -1 & -1 & 1 & | & 0 \\ -1 & -1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ and find } E_4 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

As a consequence, the matrix A is diagonalizable and

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$

is an ordered basis for \mathbb{R}^3 which consists of eigenvectors of A.

Problem 5 (12 points: 4+2+6).

- a) Let $T : P_3(\mathbb{R}) \to P_3(\mathbb{R}), T(f(x)) = f'(x)$. Determine the *T*-cyclic subspace generated by the polynomial $p(x) = x^2 + x + 1$.
- b) Let $A \in M_{n \times n}(\mathbb{C})$ and f(t) be the characteristic polynomial of A. Which of the following statements is a matrix version of the Caley-Hamilton Theorem for A? [Check the box if true]
 - It is $f(\lambda) = 0 \in \mathbb{C}$ for some $\lambda \in \mathbb{C}$ if and only if $\lambda = 0$.
 - X It holds f(A) = 0, where $0 \in M_{n \times n}(\mathbb{C})$ denotes the zero matrix.
 - f(t) is the zero polynomial.
- c) Let $A \in M_{2\times 2}(\mathbb{C})$ be a matrix such that $\lambda_1, \lambda_2 \in \mathbb{C}$ are the (not necessarily distinct) eigenvalues.
 - i) Prove that A is invertible if and only if $\lambda_1 \lambda_2 \neq 0$.

ii) Prove that if
$$\lambda_1 + \lambda_2 = 0$$
, then $A^2 = \begin{pmatrix} -\lambda_1 \lambda_2 & 0 \\ 0 & -\lambda_1 \lambda_2 \end{pmatrix}$.

Solution to Problem 5 a) and c):

a) The *T*-cyclic subspace generated by p(x) is given by

$$\operatorname{span}\{p(x), T(p(x)), T^2(p(x)), \ldots\} = \operatorname{span}\{x^2 + x + 1, 2x + 1, 2\} = P_2(\mathbb{R}).$$

c) Since A has exactly the two eigenvalues λ_1 and λ_2 the characteristic polynomial must be of the form

$$f(t) = \det(A - tI_2) = (\lambda_1 - t)(\lambda_2 - t) = \lambda_1\lambda_2 - (\lambda_1 + \lambda_2)t + t^2.$$

This implies $det(A) = f(0) = \lambda_1 \lambda_2$. Because A is invertible if and only if $det(A) \neq 0$ the first claim follows. If $\lambda_1 + \lambda_2 = 0$ the second claim follows from the Caley-Hamilton Theorem which asserts that

$$0 = f(A) = \lambda_1 \lambda_2 I_2 + A^2.$$

Problem 6 (20 points: 4+4+2+4+6). Let V be a finite-dimensional inner product space over the field \mathbb{C} and let $T: V \to V$ be a linear transformation.

- a) Provide the defining property for the *adjoint* $T^* : V \to V$ and calculate the adjoint of $T : \mathbb{C}^2 \to \mathbb{C}^2$, $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix}$, where \mathbb{C}^2 is equipped with the standard inner product.
- b) When is T called *self-adjoint*? State the definition and give an example.
- c) When is T called *normal*? Give the definition and an example of a normal and non-self-adjoint T.
- d) Prove that if $S, T : V \to V$ both are self-adjoint linear transformations such that ST = TS, then ST is a self-adjoint linear transformation.
- e) Prove that if T is self-adjoint, then $||T(v) + iv||^2 = ||T(v)||^2 + ||v||^2$ for all $v \in V$.

Solution to Problem 6:

a) The defining property of the adjoint $T^*: V \to V$ is

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all $x, y \in V$.

The adjoint for the given T is $T^* : \mathbb{C}^2 \to \mathbb{C}^2$, $T^* \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ -a \end{pmatrix}$.

- b) T is self-adjoint if and only $T = T^*$. An example is the identity $I : \mathbb{C}^2 \to \mathbb{C}^2$.
- c) T is normal if and only $TT^* = T^*T$. An example of a normal and non-self-adjoint operator is T defined in a).
- d) By the properties of the adjoint we compute

$$(ST)^* = T^*S^* = TS = TS,$$

were we used the self-adjointness of S and T in the second step and the assumption that S and T commute in the last step.

e) For every $v \in V$ we calculate, using the properties of the inner product,

$$\langle T(v) + iv, T(v) + iv \rangle = \langle T(v), T(v) \rangle + i \langle v, T(v) \rangle - i \langle T(v), v \rangle - i^2 \langle v, v \rangle.$$

By the definition of the norm and $i^2 = -1$ it remains to show that

$$i\langle v, T(v) \rangle - i\langle T(v), v \rangle = 0,$$

which is equivalent to the fact that

$$\langle v, T(v) \rangle = \langle T(v), v \rangle.$$

This is true because T is self-adjoint.

a) Which of the following formulae defines the product AB of two matrices $A, B \in M_{n \times n}(\mathbb{C})$? [Check the box if true]

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ki}B_{jk} \quad (1 \le i, j \le n)$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{jk} \quad (1 \le i, j \le n)$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj} \quad (1 \le i, j \le n)$$

- b) We define the *trace* $\operatorname{tr}(A)$ of a matrix $A \in M_{n \times n}(\mathbb{C})$ to be the sum of the diagonal entries, that is $\operatorname{tr}(A) := \sum_{i=1}^{n} A_{ii}$. Prove that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ for all $A, B \in M_{n \times n}(\mathbb{C})$.
- c) Let A ∈ M_{n×n}(ℂ) be a matrix with the distinct eigenvalues λ₁,..., λ_k ∈ ℂ and corresponding algebraic multiplicities m₁,..., m_k. Prove that tr(A) = ∑_{i=1}^k m_iλ_i.
 [Hint: Find a matrix which is similar to A and for which this formula is obvious.]

Solution to Problem 7 b) and c):

b) We compute

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} B_{ki} A_{ik} = \sum_{k=1}^{n} (AB)_{kk} = \operatorname{tr}(BA).$$

c) For the matrix A we know from the lecture that there exists a Jordan canonical form J such that $A = Q^{-1}JQ$ for some invertible matrix Q. The diagonal entries of J are exactly the eigenvalues of A and each eigenvalue λ_i occurs exactly m_i times, since m_i is the dimension of the generalized eigenspace corresponding to λ_i . This implies $tr(J) = \sum_{i=1}^k m_i \lambda_i$. By Part b) it follows

$$\operatorname{tr}(A) = \operatorname{tr}(Q^{-1}JQ) = \operatorname{tr}(JQ^{-1}Q) = \operatorname{tr}(J) = \sum_{i=1}^{k} m_i \lambda_i$$

which proves the claim.

Extra space to complement your solution to Problem _____: