MATH 115
 FINAL EXAM

1 (4 pts)
Solve the simultaneous congruences:

$$
\begin{array}{rr}
2 x \equiv 5 & \bmod 7 \\
7 x \equiv-1 & \bmod 11
\end{array}
$$

$2(3 \mathrm{pts})$ Let p be a prime, with $p \equiv 2 \bmod 3$. Show that, for an integer a with $(a, p)=1$, the congruence

$$
x^{3} \equiv a \quad \bmod p
$$

always has a unique solution.
3. (8 pts)

Let p be a prime, and a be an integer with $(a, p)=1$.
a) (3 pts) Show that $\{a, 2 a, \cdots,(p-1) a\}$ is a reduced residue system for the modulus p.
b) (2 pts) Let $N_{k}=1^{k}+2^{k}+\cdots+(p-1)^{k}$. Use the results of part a) to show that

$$
a^{k} N_{k} \equiv N_{k} \quad \bmod p
$$

for any a with $(a, p)=1$.
Note that the result of part b) can be written as

$$
\left(a^{k}-1\right) N_{k} \equiv 0 \quad \bmod p
$$

for any $(a, p)=1$.
c) (3 pt) Use the result of part b) to show that

$$
N_{k} \equiv 0 \quad \bmod p
$$

whenever k is not divisible by $p-1$.
4. (6 pts) Let $a \geq 2, k \geq 1$ be positive integers. Put

$$
n=a^{k}-1
$$

It's clear that $\operatorname{gcd}(a, n)=1$.
a) $(4 \mathrm{pts})$ Prove that the order of $a \bmod n$ is equal to k, i.e. k is the smallest positive integer m, such that

$$
a^{m} \equiv 1 \quad \bmod n
$$

(Hint: $a^{m}-1<a^{k}-1$ for $m<k$.)
b) (2 pts) Hence show that for k divides $\phi\left(a^{k}-1\right)$, where ϕ is Euler's function.
5. (4 pts) Determine whether

$$
x^{2} \equiv 13 \quad \bmod 3019
$$

is solvable, given that 3019 is a prime.
6. (6 pts) List all the positive definite reduced forms of discriminant -55 .
7. (6 pts) Compute the quadratic irrationality represented by the periodic continued fraction

$$
\overline{\langle 2,5\rangle} \text { and } \overline{\langle 3,4\rangle}
$$

8. (6 pts) Compute the continued fraction expansion of $\sqrt{11}$ and $\sqrt{30}$.
9. $(7 \mathrm{pts})$ Given the continued fraction expansion of $\sqrt{19}$ is $\langle 4, \overline{2,1,3,1,2,8}\rangle$. Find the smallest positive solution to the equation:

$$
x^{2}-19 y^{2}=1
$$

