Math 104 Final Exam, Section 5 Fall 2008

3 hours. 100 points total. Name \qquad

1. (10 points) Are the following statements true or false?
(a) If f_{n} is a sequence of differentiable functions and $f_{n} \rightarrow f$ uniformly, then $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly.
(b) If $f: X \longrightarrow Y$ is continuous and $U \subset Y$ is connected, then $f^{-1}(U)$ is connected.
(c) If $f: X \longrightarrow Y$ is continuous, $E \subset X$ is closed and X is compact, then $f(E) \subset Y$ is closed.
(d) Let $C(X, \mathbb{R})$ denote the metric space of bounded continuous functions on X. Any closed and bounded subset of $C(X, \mathbb{R})$ is compact.
2. (10 points) Give three equivalent definitions of a continuous map $f: X \longrightarrow Y$ between metric spaces.
3. (5 points) Give an example of a countably infinite subset of \mathbb{R} that is compact.
4. (15 points) Suppose that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the inequality

$$
|f(x)-f(y)| \leq|x-y|^{2}
$$

for all x and y in \mathbb{R}. Prove that f is constant. (Hint: find the derivative.)
5. (15 points) Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable, and $f^{\prime}(x)$ is never equal to 1 . Prove that there can be at most one fixed point $x \in \mathbb{R}$ so that $f(x)=x$.
6. (10 points) Find a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ which converges pointwise on some subset of \mathbb{R} to $\frac{1}{(1-x)^{2}}$. What is the radius of convergence of this power series?
7. (20 points) Define the two functions

$$
\begin{gathered}
C(x):=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n} \\
S(x):=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}
\end{gathered}
$$

(a) Show that the power series for $C(x)$ and $S(x)$ converge for all $x \in \mathbb{R}$.
(b) Prove that $S^{\prime}(x)=C(x)$.
(c) Show that there exists some point x so that $S(x)=42$.
(d) Why does $S(x)$ achieve a maximum on the set $E:=C^{-1}((-\infty, 42])$? (In other words why is there some point $x_{0} \in E$ so that $S\left(x_{0}\right)=\sup S(E)$?)
8. (15 points) Prove or find a counter example to the following statement: Given any continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$, there exists a sequence of polynomials $\left\{p_{n}(x)\right\}$ so that $p_{n}(x) \rightarrow f(x)$ pointwise on \mathbb{R}.

