RECIPROCITY LAWS AND DENSITY THEOREMS

Richard Taylor

General problem: count the number of solutions to a FIXED polynomial(s) modulo a VARIABLE PRIME number.

RECIPROCITY LAW: a law which gives a completely different way to find the number of solutions for any given prime p.

DENSITY THEOREM: a theorem which describes the statistical behaviour of the number of solutions as the prime p varies.

GAUSS' LAW OF QUADRATIC RECIPROCITY (1796):

For any whole number n and prime number p the number of solutions to
$X^{2} \equiv n$ modulo p
is 0,1 or 2 . For fixed n it depends only on p modulo $4 n$.

How many solutions does $X^{2}+7 \equiv 0$ have modulo 32452843 ?
$32452843=1159030 \times 28+3$

Thus it has the same number of solutions as does
$X^{2}+7 \equiv 0$ modulo 3 ,
i.e. none.

DISTRIBUTION QUESTIONS

For what fraction of prime numbers p does $X^{2}+n \equiv 0$ modulo p have 2 solutions? And what fraction 0 solutions?

THEOREM (Dirichlet, 1837): If $-n$ is not a perfect square then for half the primes $X^{2}+n \equiv 0$ modulo p has two solutions and for half the primes it has no solutions.

More precisely de la Vallée-Poussin showed in 1896 that

$$
\frac{\#\left\{p \leq t: X^{2}+n \equiv 0 \bmod p \text { has no solutions }\right\}}{\#\{p \leq t\}}
$$

and

$$
\frac{\#\left\{p \leq t: X^{2}+n \equiv 0 \bmod p \text { has two solutions }\right\}}{\#\{p \leq t\}}
$$

(where p denotes a variable prime number) both tend to $1 / 2$ as t tends to infinity.

Both Dirichlet and de la Vallée-Poussin used Gauss' law of quadratic reciprocity in an essential way.

What about higher degree polynomials of one variable?

There is a reciprocity theorem conjectured by Langlands, but it still seems to be far from being proved. It is not known even for a general quintic equation.

However, rather surprisingly, Dirichlet's density theorem was extended to ALL one variable polynomial equations by Frobenius in 1880.

Example:

$$
x^{4}-2=0 .
$$

Its GALOIS GROUP G consists of all permutations of the roots

$$
\{\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}\}
$$

which preserve all algebraic relations between them. For instance

$$
\sqrt[4]{2}+(-\sqrt[4]{2})=0
$$

and so the pair $\{\sqrt[4]{2},-\sqrt[4]{2}\}$ must be taken either to itself or to the pair $\{i \sqrt[4]{2},-i \sqrt[4]{2}\}$.

1

$$
\begin{aligned}
& (\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}) \\
& (\sqrt[4]{2},-\sqrt[4]{2})(i \sqrt[4]{2},-i \sqrt[4]{2})
\end{aligned}
$$

$$
(\sqrt[4]{2},-i \sqrt[4]{2},-\sqrt[4]{2}, i \sqrt[4]{2})
$$

$$
c=(i \sqrt[4]{2},-i \sqrt[4]{2})
$$

$$
(\sqrt[4]{2},-i \sqrt[4]{2})(-\sqrt[4]{2}, i \sqrt[4]{2})
$$

$$
(\sqrt[4]{2},-\sqrt[4]{2})
$$

$$
(\sqrt[4]{2}, i \sqrt[4]{2})(-\sqrt[4]{2},-i \sqrt[4]{2})
$$

There are 8 such permutations:

1 fixes all four roots;

2 fix just two roots; and

5 fix no roots.

Frobenius and de la Vallée-Poussin showed that

$$
\frac{\#\left\{p \leq t: X^{4}-2 \equiv 0 \bmod p \text { has } 0 \text { solutions }\right\}}{\#\{p \leq t\}}
$$

$$
\frac{\#\left\{p \leq t: X^{4}-2 \equiv 0 \bmod p \text { has } 1 \text { solution }\right\}}{\#\{p \leq t\}} \longrightarrow 0
$$

$$
\#\left\{p \leq t: X^{4}-2 \equiv 0 \bmod p \text { has } 2 \text { solutions }\right\}
$$

$$
\#\{p \leq t\}
$$

$$
\frac{\#\left\{p \leq t: X^{4}-2 \equiv 0 \bmod p \text { has } 3 \text { solutions }\right\}}{\#\{p \leq t\}} \longrightarrow 0
$$

$$
\frac{\#\left\{p \leq t: X^{4}-2 \equiv 0 \bmod p \text { has } 4 \text { solutions }\right\}}{\#\{p \leq t\}} \longrightarrow 1 / 8
$$

as t goes to infinity.

What about equations with more variables?

For example (elliptic curves):
$Y^{2}=X^{3}+c X+d$
(c, d being fixed integers. Smooth, i.e. $4 c^{3}+27 d^{2} \neq 0$.)
$j_{E}=6912 c^{3} /\left(4 c^{3}+27 d^{2}\right)$ is the j-invariant of E.

How does the number N_{p} of solutions modulo p vary with a prime number p ?

$$
E_{0}: Y^{2}+Y=X^{3}-X^{2}
$$

$$
\begin{array}{|c|ccccccccc|}
\hline p & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & \ldots \\
\hline p-N_{p} & -2 & -1 & 1 & -2 & 1 & 4 & -2 & 0 & \ldots \\
\hline
\end{array}
$$

$$
Y^{2}+Y=X^{3}-X^{2}
$$

p	2	3	5	7	11	13	17	19	\ldots
$p-N_{p}$	-2	-1	1	-2	1	4	-2	0	\ldots

$$
\begin{gathered}
q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}= \\
q-2 \mathbf{q}^{2}-\mathbf{q}^{3}+2 q^{4}+\mathbf{q}^{5}+2 q^{6}-2 \mathbf{q}^{7} \\
-2 q^{9}-2 q^{10}+\mathbf{q}^{11}-2 q^{12}+4 \mathbf{q}^{13}+4 q^{14} \\
-q^{15}-4 q^{16}-2 \mathbf{q}^{17}+4 q^{18}+2 q^{20}+\ldots
\end{gathered}
$$

$$
Y^{2}+Y=X^{3}-X^{2}
$$

p	2	3	5	7	11	13	17	19	\ldots
$p-N_{p}$	-2	-1	1	-2	1	4	-2	0	\ldots

$$
\begin{gathered}
q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}= \\
q-2 \mathbf{q}^{2}-\mathbf{q}^{3}+2 q^{4}+\mathbf{q}^{5}+2 q^{6}-2 \mathbf{q}^{7} \\
-2 q^{9}-2 q^{10}+\mathbf{q}^{11}-2 q^{12}+4 \mathbf{q}^{13}+4 q^{14} \\
-q^{15}-4 q^{16}-2 \mathbf{q}^{17}+4 q^{18}+2 q^{20}+\ldots
\end{gathered}
$$

THEOREM (Eichler, 1954) $p-N_{p}$ is the coefficient of q^{p}.

$$
\begin{aligned}
& f(z) \\
= & e^{2 \pi i z} \Pi_{n=1}^{\infty}\left(1-e^{2 n \pi i z}\right)^{2}\left(1-e^{22 n \pi i z}\right)^{2} \\
= & \sum_{n=1}^{\infty} a_{n} e^{2 n \pi i z}
\end{aligned}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbf{Z})$ with $11 \mid c$ implies

$$
f((a z+b) /(c z+d))=(c z+d)^{2} f(z)
$$

Also

$$
f(-1 /(11 z))=-11 z^{2} f(z)
$$

TANIYAMA('55)-SHIMURA('57)-

 WEIL('67) CONJECTURE: Gives a somewhat similar effective algorithm for calculating $p-N_{p}$ for any elliptic curve$E: \quad Y^{2}=X^{3}+c X+d$ (smooth).

Proved (Breuil, Conrad, Diamond, T: 2001) following ideas introduced by Wiles.

The algorithm involves finite index

 subgroups of $G L_{2}(Z)$ the group of 2×2 matrices with whole number entries and determinant ± 1 and its action on the hyperbolic plane.LANGLANDS in the mid 1970's proposed a similar reciprocity law for any system of polynomial equations in any number of variables in terms connected to subgroups of finite index in $G L_{n}(\mathbf{Z})$ for variable n.

We are beginning to make progress. For example Tom Barnet-Lamb (2009) has proved a reciprocity for
$X_{1}^{5}+X_{2}^{5}+X_{3}^{5}+X_{4}^{5}+X_{5}^{5}=a X_{1} X_{2} X_{3} X_{4} X_{5}$
for $a \in \mathrm{Q}-\mathrm{Z}[1 / 10]$ in terms of $G L_{4}(\mathbf{Z})$ and $G L_{2}(\mathbf{Z})$. He deduces the meromorphic continuation and functional equation of the ζ-function.

DENSITY THEOREMS IN > 1 VARI-

 ABLE$$
E: Y^{2}=X^{3}+c X+d
$$

THEOREM (Hasse, 1933): $\left|p-N_{p}\right|<$ $2 \sqrt{p}$.

QUESTION: How is the normalised error term $\left(p-N_{p}\right) / \sqrt{p}$ distributed as p varies?

CONJECTURE (Sato-Tate, 1963):
If E is not $\mathbf{C M}$ then $\left(p-N_{p}\right) / \sqrt{p}$ is distributed in the range from -2 to

2 like

$$
(1 / 2 \pi) \sqrt{4-t^{2}} d t
$$

ie. for $f \in C[-2,2]$

$$
\#\{p \leq x\}^{-1} \sum_{p \leq x} f\left(\left(p-N_{p}\right) / \sqrt{p}\right)
$$

tends to

$$
(1 / 2 \pi) \int_{-2}^{2} f(t) \sqrt{4-t^{2}} d t
$$

as $x \rightarrow \infty$.

SATO-TATE DISTRIBUTION
 FOR \triangle AND $p<1,000,000$

(drawn by WILLIAM STEIN)

THEOREM (CHSBT, 2006): True if $j_{E} \in \mathbf{Q}-\mathbf{Z}$.

There exist conjectural generalizations to any number of polynomial equations in any number of variables.

$$
\begin{aligned}
S U(2) / \text { conjugacy } & \xrightarrow{\sim}[-2,2] \\
{[g] } & \longmapsto \operatorname{tr} g
\end{aligned}
$$

Haar measure $\longleftrightarrow(1 / 2 \pi) \sqrt{4-t^{2}} d t$

$$
\left[F_{p} / \sqrt{p}\right] \longmapsto\left(p-N_{p}\right) / \sqrt{p},
$$

where $\left[F_{p}\right] \subset G L_{2}(\overline{\mathbf{Q}})$ has characteristic polynomial

$$
X^{2}-\left(p-N_{p}\right) X+p
$$

(Frobenius conjugacy class.)

The Sato-Tate conjecture says that

 the conjugacy classes$$
\left[F_{p} / \sqrt{p}\right]
$$

are equidistributed in $S U(2) /$ conjugacy with respect to Haar measure.

We have to prove that for all $f \in$ $C[-2,2]$

$$
\left(\sum_{p \leq x} f\left(\operatorname{tr} F_{p} / \sqrt{p}\right)\right) / \#\{p \leq x\}
$$

tends to

$$
(1 / 2 \pi) \int_{-2}^{2} f(t) \sqrt{4-t^{2}} d t
$$

as $x \rightarrow \infty$.

The Peter-Weyl theorem tells us that

 a the functions$$
\operatorname{tr} \text { Sym }^{n-1}
$$

for $n=1,2,3, \ldots$ span a dense subspace of $C[S U(2) /$ conjugacy $]=C[-2,2]$.

Hence it suffices to show that

$$
\left(\sum_{p \leq x} \operatorname{tr}^{\left.\operatorname{Sym}^{n-1}\left(F_{p} / \sqrt{p}\right)\right) / \#\{p \leq x\}}\right.
$$

tends to 1 if $n=1$ (clear) and tends to 0 if $n>1$.

L-FUNCTIONS: We define a holomorphic function

$$
L\left(\text { Symm }^{n-1} E, s\right)
$$

in $\operatorname{Re} s>(n+1) / 2$ by

$$
\prod_{p} \operatorname{det}\left(1_{n}-\left(\operatorname{Symm}^{n-1} F_{p}\right) / p^{s}\right)^{-1}
$$

e.g.

$$
L\left(\text { Symm }^{0} E, s\right)=\zeta(s)
$$

$$
L\left(\text { Symm }^{1} E, s\right)=L(E, s)
$$

Taking logarithmic differentials we

 see that$$
L^{\prime}\left(\text { Symm }^{n-1} E, s\right) / L\left(\text { Symm }^{n-1} E, s\right)
$$

differs from

$$
-\sum_{p}(\log p)\left(\operatorname{tr} \operatorname{Symm}^{n-1}\left(F_{p} / \sqrt{p}\right)\right) p^{(n-1) / 2-s}
$$

by a function holomorphic in $\operatorname{Re} s>$ $n / 2$.

Tauberian theorems tell us it suffices that the ratio is holomorphic in $\operatorname{Re} s \geq(n+1) / 2$.
i.e. that

$$
L\left(\text { Symm }^{n-1} E, s\right)
$$

is holomorphic and non-zero in

$$
\operatorname{Re} s \geq(n+1) / 2
$$

for $n>1$.

Gelbart-Jacquet (1972): this is true IF Symm ${ }^{n-1} E$ satisfies a reciprocity law involving $G L_{n}(\mathbf{Z})$.

