Name: \qquad

Each Problem is worth 10 points.

Problem	1	2	3	4	5	6	7	8	9	10	11	12	Total
Score													$/ 120$

Problem 1. For each question below, circle True or False. DON'T GUESS, 2 points for each right answer, minus 2 points for each wrong answer.
(a) True or False: Suppose that two cars are racing. After t seconds the first car is traveling at velocity $v_{1}(t)$ feet per second and the second car at $v_{2}(t)$ feet per second. If the average value of $v_{1}(t)$ on $[0,60]$ is equal the average value of $v_{2}(t)$ on $[0,60]$, then the cars have travelled the same distance after 60 seconds.
(b) True or False:

$$
\int x e^{x} d x=e^{x}(x-1)+C .
$$

(c) True or False: $y=1+e^{2 x}$ satisfies the differential equation

$$
y^{\prime}=2 y
$$

(d) True or False:

$$
\left.\frac{d}{d x}\left[\int_{\frac{1}{2}}^{x} \ln t d t\right]\right|_{x=1}=0
$$

(e) True or False: As n gets very large,

$$
\left[\frac{1}{n}+\frac{2}{n}+\cdots+\frac{n-1}{n}\right] \cdot \frac{1}{n}
$$

approaches 1. (Hint: This is a Riemann sum.)

Problem 2. Compute the following indefinite integrals:
(a)

$$
\int \sqrt{2 x-3} d x
$$

(b)

$$
\int e^{4+3 x} d x
$$

Problem 3. Compute the following definite integrals:
(a)

$$
\int_{0}^{1} \frac{3}{(4-2 x)^{2}} d x
$$

(b)

$$
\int_{0}^{2} \frac{e^{x}-e^{-2 x}}{2 e^{x}} d x
$$

Problem 4. Suppose that the marginal revenue function for a company is $200-2 x$. Find the additional revenue received from doubling production if currently 10 units are being produced.

Problem 5. Compute the area of the region between the curves $y=x^{2}-1$ and $y=x+1$ from $x=0$ to $x=4$.

Problem 6. For what value of a do the two shaded regions below have the same area?

Problem 7. Suppose that a lake is stocked with 100 fish. After 1 month, there are 150 fish in the lake. An ecological study predicts that the lake can support 600 fish. Use a logistic growth curve to estimate the number of fish in the lake after 1 year.

Problem 8.

(a) Find the percentage rate of change of the function $f(x)=2 x^{2}-3 x$ at $x=2$.
(b) Find the relative rate of change of the function $f(x)=\sqrt[3]{\frac{(2 x+1)^{2}}{(2-x) e^{x}}}$ at $x=1$.

Problem 9. A company can sell $q=\frac{2000}{p}-200$ units of a particular commodity at a price of p dollars per unit.
(a) Compute the elasticity $E(p)$.
(b) If the price is currently $\$ 5$ per unit, would the revenue increase or decrease when the price is raised?

Problem 10. Find the consumer's surplus for the demand curve $p=\frac{200}{x+10}+10$ at sales level $x=10$.

Problem 11. Use a Riemann sum with $n=4$ and midpoints to estimate the area under the graph of $y=2 x+1$ on the interval $2 \leq x \leq 4$.

Problem 12. Compute the volume of a frustrum of a right circular cone with height 1 , lower base radius 2 , and top radius 1 , obtained by rotating the shaded region below about the x-axis:

