Math 115
Final Exam

Professor K. A. Ribet
May 18, 1998

4 The numbers 257 and 661 are prime.
1 (6 points). Find a positive integer n such that $n / 3$ is a perfect cube, $n / 4$ is a perfect fourth power, and $n / 5$ is a perfect fifth power.

2 (5 points). Prove that there are no whole number solutions to the equation $x^{2}-15 y^{2}=31$.

3 (5 points). Find the number of solutions to the congruence $x^{2} \equiv 9 \bmod 2^{3} \cdot 11^{2}$.
4 (7 points). Which positive integers m have the property that there a primitive root mod m ? (Summarize what we know about this question, and why we know it. Your answer should be clear enough that one could use it to decide immediately if there is a primitive root modulo $(257)^{2}, 4 \cdot 661,257 \cdot 661, \ldots$)

5 (6 points). Fermat showed that $2^{37}-1$ is composite by finding a prime factor p of $2^{37}-1$ which lies between 200 and 300 . Using your knowledge of number theory, deduce the value of p.

6 (7 points). The continued fraction expansion of $\sqrt{5}$ is $\langle 2,4,4, \ldots\rangle$. If

$$
\langle 2, \underbrace{4,4, \ldots, 4}_{99}\rangle=h / k
$$

(in lowest terms), calculate $h^{2}-5 k^{2}$.
7 (5 points). Prove that there are an infinite number of primes congruent to 3 $\bmod 4$.

8 (6 points). Suppose that $p=a^{2}+b^{2}$, where p is an odd prime number and a is odd. Show that $\left(\frac{a}{p}\right)=+1$. (Use the Jacobi symbol.)

9 (8 points). Let a and b be positive integers. Show that

$$
\phi(a b) \phi(\operatorname{gcd}(a, b))=\phi(a) \phi(b) \operatorname{gcd}(a, b), \quad \phi=\text { Euler } \phi \text {-function. }
$$

(Example: If $a=12$ and $b=8$, the equation reads $32 \cdot 2=4 \cdot 4 \cdot 4$.)
10 (5 points). Find all solutions in integers y and z to the equation $6^{2}+y^{2}=z^{2}$.

